Cannabis and the Anxiety of Fragmentation – A Systems Approach for Finding an Anxiolytic Cannabis Chemotype, B. S. Kamal et al., 2018

Cannabis and the Anxiety of Fragmentation – A Systems Approach for Finding an Anxiolytic Cannabis Chemotype,

B. S. Kamal, F. Kamal, D. E. Lantela,

Frontiers in Neuroscience, 2018, 12, article 730.

https://doi.org/10.3389/fnins.2018.00730

 

Abstract :

Cannabis sativa is a medicinal herb with a diverse range of chemotypes that can exert both anxiolytic and anxiogenic effects on humans. Medical cannabis patients receiving organically grown cannabis from a single source were surveyed about the effectiveness of cannabis for treating anxiety. Patients rated cannabis as highly effective overall for treating anxiety with an average score of 8.03 on a Likert scale of 0 to 10 (0 = not effective, 10 = extremely effective). Patients also identified which strains they found the most or least effective for relieving their symptoms of anxiety. To find correlations between anxiolytic activity and chemotype, the top four strains voted most and least effective were analyzed by HPLC-MS/MS to quantify cannabinoids and GC-MS to quantify terpenes. Tetrahydrocannabinol (THC) and trans-nerolidol have statistically significant correlations with increased anxiolytic activity. Guiaol, eucalyptol, γ-terpinene, α-phellandrene, 3-carene, and sabinene hydrate all have significant correlations with decreased anxiolytic activity. Further studies are needed to better elucidate the entourage effects that contribute to the anxiolytic properties of cannabis varieties.

Introduction

Anxiety is an emotion characterized by an inner state of unease, most often in anticipation of future events. From a biological perspective, anxiety is a biochemical response to a perceived danger or threat in the future, as opposed to fear, which is a response to an immediate threat (Barlow, 2000). Anxiety is considered pathogenic when the emotional response is disproportionate, in duration, frequency, or intensity, to the cause, which hinders the patient to lead a normal life (American Psychiatric Association, 2013). Anxiety disorders may manifest in many different forms and durations, from continuous anxiety in daily life known as Generalized Anxiety Disorder, to sudden and debilitating episodes of extreme anxiety known as in Panic Attack Disorder (Rynn and Brawman-Mintzer, 2004). Anxiety can also be in response to the symptoms of other illnesses, such as Chronic Obstructive Pulmonary Disease (COPD), and asthma (Tselebis et al., 2016). It may also manifest from the possible negative outcomes of diseases such as the prospect of death for cancer patients (Mosher et al., 2016). An estimated 3.5 million (12.6%) of Canadians (Statistics Canada, 2015b) met the criteria for a mood disorder, 2.4 million of which have reported symptoms consistent with Generalized Anxiety Disorder (Statistics Canada, 2015a). Clinicians manage symptoms of anxiety by administering pharmacological drugs, allowing patients to return to a normal life.

Cannabis may hold many pharmacological benefits over conventional therapies for anxiety, which mostly include but are not limited to Benzodiazepines and Selective Serotonin Reuptake Inhibitors (SSRIs) (Patel et al., 2017; Turna et al., 2017). Anxiety is one of the most common symptoms for which medical marijuana users seek relief from in North America (Turna et al., 2017). Somewhat paradoxically, anxiety is also reported as a common adverse effect of cannabis use in medical and recreational contexts, with panic attacks or paranoia being reported after high doses of THC consumption (Hall and Solowij, 1998; Hoch et al., 2015). More than just molecular interactions must be considered as the “set and setting,” which refers to the mindset of the user along with their physical and social environment, affects the individual’s response to psychoactive drugs (Hartogsohn, 2017). The “set and setting” of cannabis use could also result in anxiety due to its illegality and social stigma. Nonetheless, cannabis has a complex pharmacology that could be harnessed for the treatment of anxiety.

Phytocannabinoids are a diverse group of over 150 terpenoid compounds and the most abundant secondary plant metabolites produced by the cannabis plant (Hanuš et al., 2016). The most abundant and widely studied phytocannabinoids are delta-9-Tetrahydrocannabinol (THC), which is responsible for the psychoactive effects of cannabis, and cannabidiol (CBD), a non-psychotropic but pharmacologically active substance, both of which act on the endocannabinoid system (Greydanus et al., 2013). Current molecular research indicates that the endocannabinoid system plays an important role in the pathophysiology of anxiety disorders and its modulation may be an effective treatment (Lisboa et al., 2017). Patients suffering from Post-Traumatic Stress Disorder (PTSD) exhibit higher expression of CB1 receptors but lower peripheral concentrations of anandamide or N-arachidonoylethanolamine (AEA), the endogenous ligand of CB1 (Lisboa et al., 2017). Likewise, peripheral concentrations of anandamide in PTSD patients have been shown to be inversely correlated with symptom severity (Hill et al., 2013). Moreover, baseline anxiety is also inversely correlated with peripheral AEA concentrations in healthy adult individuals (Dlugos et al., 2012). CB1 antagonists have also been shown to cause anxiety in humans, with the drug Rimonabant, removed from the market due to adverse effects, mainly anxiety and depression (Moreira and Crippa, 2009). Clinical trials have shown Nabilone, a synthetic THC analog and CB1 agonist, to be effective in the treatment of anxiety (Fabre and McLendon, 1981). Interestingly, synthetic THC (Dronabinol) which has been approved to treat pain, exhibits anxiety as a common side effect (Naef et al., 2003). Synthetic THC has been found to have a lower abuse potential compared to herbal cannabis because of its propensity to cause anxiety and dysphoria (Calhoun et al., 1998; McPartland and Pruitt, 1999). Altogether, this evidence suggests that the CB1 is involved in the pathophysiology of anxiety, and its activation appears to be inversely correlated to symptoms of anxiety. Moreover, pure THC appears to cause more anxiety than whole plant cannabis, and this may be due to the therapeutic and/or modulatory effects of other minor constituents such as terpenes.

To determine the effect of major cannabinoids on anxiety, studies conducted on mice and rats have shown THC and other CB1 agonists display a dose-dependent biphasic response curve whereby low doses result in anxiolytic effects and high doses in anxiogenic effects (Rubino et al., 2007). This biphasic response curve explains in part why cannabis is both sought for anxiety relief and also seems to cause anxiety as a side effect (Bhattacharyya et al., 2017). Furthermore, preclinical evidence suggests that CBD possesses both anxiolytic and antipsychotic properties (Guimarães et al., 1990; Bergamaschi et al., 2011). High doses of CBD (100 mg/kg) were ineffective in animal models of generalized anxiety, while low doses (10 mg/kg) were found to have anxiolytic-like effects (Silveira Filho and Tufik, 1981). Further studies have confirmed the anxiolytic-like effects of CBD at moderate doses (Onaivi et al., 1990; Long et al., 2010). In rat models of generalized anxiety, micro-injections of CBD in the dorsal periaqueductal gray is shown to produce anxiolytic effects via partial activation of the Serotonin 1A Receptor (5-HT1A) receptors (Bitencourt et al., 2008; Soares et al., 2010). Experimentally induced anxiety in healthy human volunteers is reduced by administration of CBD (Crippa et al., 2004). Functional Magnetic Resonance Imaging (fMRI) studies show that CBD attenuates activity in the amygdala and the anterior cingulate (Fusar-Poli et al., 2009). The regions of the brain modulated in these studies reflect the anxiolytic action of conventional therapies such as Benzodiazepines (Crippa et al., 2004; Bitencourt et al., 2008).

It appears that the isolated cannabinoids, as well as herbal cannabis, can induce both anxiolytic and anxiogenic effects, and the mechanism of action responsible for such opposing effects may include both a dose dependent biphasic response and various “entourage effects” produced by different cannabis chemotypes. Recently, Gallily et al. demonstrated the greater efficacy of standardized cannabis plant extract over purified CBD isolate for pain and inflammation (Gallily et al., 2015). Purified CBD isolates were found to have a biphasic response curve whereas the whole cannabis extract showed a dose dependent response curve, with higher concentrations still exhibiting the therapeutic benefits of CBD (Gallily et al., 2015). Further research is necessary to elucidate the mechanisms of action of pure cannabiniod isolates vs. whole cannabis plant extract containing predominately THC and/or CBD along with many more phytocannabinoids and terpenoids. Altogether, this presents a complex situation in which cannabis can have both anxiolytic and anxiogenic properties which are not only dependent on pharmacological factors but also environmental ones. A large amount of study is required to elucidate the effects of different cannabis chemotypes on anxiety. Much of the research in humans has focused on using isolated forms of THC and CBD as medical treatments (Schrot and Hubbard, 2016); and not as they exist in the cannabis plant. These two major cannabinoids collect with other minor cannabinoids, terpenes, and other secondary plant metabolites inside glandular trichomes on the surface of cannabis leaves, creating a complex botanical mixture (Booth et al., 2017) that deserves to be researched separately from purified cannabinoids.

Terpenes are the pungent and volatile oils that give cannabis varieties (and other plants) their distinctive flavors and scents and are derived from isoprene units, which is also one of the precursors of phytocannabinoids (De Meijer et al., 2009). Terpenes comprise around 10% of trichome content by weight, making them a significant component of cannabis resin (Potter, 2009). Terpene concentrations >500 ppm are of pharmacological interest (Smith et al., 2005; Baser and Buchbauer, 2010; Pauli and Schilcher, 2010) as they can affect ion channels and various types of receptors to induce secondary messenger systems and signaling cascades (Baser and Buchbauer, 2010). Cannabis-derived terpenes may have anxiolytic properties, and these include D-limonene, myrcene, α-Pinene, linalool, β-Caryophyllene, humulene, trans-nerolidol, and many others (Russo, 2011). Linalool, a monoterpene common to both lavender and cannabis possesses potential anti-neoplastic, sedative, and anxiolytic properties via modulatory activity on glutamate and GABA neurotransmitter systems (Silva Brum et al., 2001; Pauli and Schilcher, 2010). β-Caryophyllene is one of the most abundant terpenes found in cannabis extracts and is postulated to be an anti-inflammatory analgesic (Basile et al., 1988). Recent evidence suggests that the cannabinoid receptor subtype 2 (CB2) is involved in regulation of mood and anxiety disorders (Hill and Gorzalka, 2009; Ashton, 2011) and β-Caryophyllene is a selective full agonist at CB2 receptor (Gertsch, 2008; Bahi et al., 2014), and when administered systemically in mice, it produces anxiolytic effects (Bahi et al., 2014). In addition, trans-nerolidol is a non-toxic sesquiterpene which demonstrated anxiolytic activity in mice (Goel et al., 2016). Overall, cannabis products retaining the full spectrum of cannabinoids and terpenes may provide a novel therapeutic approach for the treatment of anxiety. In addition to their own mechanisms of activity, terpenes are postulated to alter the effects of cannabinoids and contribute to the greater “entourage effect” (Russo, 2011). There is some research on the therapeutic effects of terpenes in humans, and there is evidence to show that the minor constituents of cannabis modulate the effects of the major cannabinoids. However, research demonstrating how different terpene profiles change the pharmacological activity of cannabis in humans is lacking.

Depending on the genetics and environmental growth conditions of a cannabis plant, different ratios of cannabinoids and terpenes are produced, and infinite variations are possible through selective breeding and blending of different chemotypes (Lewis et al., 2017). It is postulated that the unique mixture of active compounds within each variety or extract of cannabis may together form a collective activity which cannot be reduced to any singular component such as THC or CBD. This possible modulatory property of terpenes and other minor constituents in cannabis is termed the “entourage effect” (Russo, 2011). Whole plant cannabis extracts containing THC or CBD are found to exert different activities compared to pure cannabinoids in pre-clinical models (Carlini et al., 1974; Ryan et al., 2006). A recent meta-analysis of observational research on human patients using CBD for the treatment of epilepsy has shown that cannabis extracts enriched in CBD were more potent and caused less adverse effects than isolated CBD products (Pamplona et al., 2017). Altogether, current evidence indicates that whole plant extracts containing predominately THC and CBD exert an array of different effects than their respective isolated compounds. Additional research to elucidate the contribution that minor cannabinoids such as Cannabigerol (CBG), Cannabichromene (CBC), and terpenes make in the therapeutic effects of whole plant extracts is much needed. Therefore, in this study, the relationship between patient preference for certain cannabis strains for anxiety relief and their chemotype is investigated.

https://www.frontiersin.org/articles/10.3389/fnins.2018.00730/full

Laisser un commentaire