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Abstract: Increasing evidence suggests a close relationship between the endocannabinoid system and schizophrenia. The 

endocannabinoid system comprises of two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] 

for marijuana’s psychoactive principle �9-tetrahydrocannabinol), their endogenous small lipid ligands (namely anan-

damide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and proteins for endocannabinoid 

biosynthesis and degradation. It has been suggested to be a pro-homeostatic and pleiotropic signalling system activated in 

a time- and tissue-specific manner during pathophysiological conditions. In the brain, activation of this system impacts the 

release of numerous neurotransmitters in various systems and cytokines from glial cells. Hence, the endocannabinoid sys-

tem is strongly involved in neuropsychiatric disorders, such as schizophrenia. Therefore, adolescence use of Cannabis 

may alter the endocannabinoid signalling and pose a potential environmental risk to develop psychosis. Consistently, 

preclinical and clinical studies have found a dysregulation in the endocannabinoid system such as  changed expression of 

CB1 and CB2 receptors or altered levels of AEA and 2-AG . Thus, due to the partial efficacy of actual antipsychotics, 

compounds which modulate this system may provide a novel therapeutic target for the treatment of schizophrenia. The 

present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the 

modulation of schizophrenic symptomatology. Furthermore, this review will be highlighting the therapeutic potential of 

cannabinoid-related compounds and presenting some promising patents targeting potential treatment options for schizo-

phrenia.  
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1. INTRODUCTION 

1.1. Current Pharmacological Approach for the Treat-

ment of Schizophrenia 

 Schizophrenia (SCZ) is a chronic mental disorder affect-
ing about 1 % of the population worldwide. It is character-
ized by three broad clusters of symptoms which result in 
enormous personal suffering, as well as social and economic 
burden. These symptom domains include positive symptoms 
such as delusions, hallucinations, disorganized speech and 
behaviour; negative symptoms including anhedonia and so-
cial withdrawal; and cognitive impairments in sensory in-
formation processing, attention, working memory and execu-
tive functions [1]. They occur in different combinations, dif-
fering degrees of severity and in a changing pattern over 
time in each patient. Thus, SCZ is regarded as a complex and 
highly heterogeneous disorder. Hyperfunction of dopaminer-
gic (DAergic) system in the mesolimbic pathway was the 
original tenet of the theory underlying the basis of SCZ  
because antipsychotic drugs blocked dopamine D2  
receptors (D2Rs) and amphetamine which indirectly  
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increases the release of dopamine (DA) exacerbated positive 
symptoms and thus led to the dopamine hypothesis of 
schizophrenia [2]. The treatment of SCZ was revolutionized 
more than 50 years ago with the discovery - by serendipity 
rather than design - that chlorpromazine and haloperidol 
(called today typical neuroleptics or the first generation an-
tipsychotics) alleviate the psychotic manifestations such as 
hallucinations and delusions by blocking the D2Rs. From the 
1970’s the second generation or atypical antipsychotics (in-
cluding clozapine, olanzapine, risperidone and aripiprazole) 
were developed. These drugs still act mainly by DA antago-
nism in the central nervous system (CNS) but their effects 
are mediated by serotonin receptor subtypes (5-HT2A/5-
HT2c), D3R and/or D4R in addition to D2Rs. This class is 
also known as Multi-acting Receptor Targeted Antipsychot-
ics (MARTA) and has less tendency to produce unwanted 
extrapyramidal side effects and hyperprolactinemia [3]. Al-
though current pharmacological armamentarium is generally 
effective treating positive symptoms, it is less effective in 
treating the negative and cognitive symptoms. In addition, it 
can induce several side effects resembling Parkinson’s dis-
ease (known as extrapyramidal side effects) and metabolic 
syndrome. Furthermore, a significant proportion of patients 
are refractory to the available drugs. Thus, there is a need to 
develop new approaches for treating SCZ and appropriate 
animal models for preclinical testing [4, 5]. It is well ac-
cepted that the pathophysiological mechanisms underlying 
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SCZ cannot be explained by simple changes in monoamine 
signalling such as DA and 5-HT but involves more complex 
alterations in brain circuits including glutamate, GABA and 
acetylcholine [6]. Thus, all these neurotransmitters could 
represent potential targets for pharmacological intervention 
[4]. In accordance, a driven focus on rational discovery of 
highly selective drugs with new mechanisms such as the 
glutamatergic, cholinergic neurotransmission or neuropep-
tidergic signalling affecting intracellular signal transduction 
pathways appeared in the past decade. Unfortunately, none 
of these drugs have reached the market yet [7]. Therefore, 
the partial efficacy of current pharmacological armamen-
tarium, since approximately one third of psychotic patients 
are non-responders raises the central question to be ad-
dressed in this review: Should the pharmacological exploita-
tion of the endocannabinoid system (ECS) be a promising 
therapeutic approach for treatment of the behavioural dimen-
sions which are dysregulated in SCZ?  

1.2. Cannabis and Schizophrenia: Clinical Evidence  

 Cannabis (or marijuana) is the most frequently abused 
illicit “recreational” substance in the Western society. Its 
popularity is due to its capacity to alter sensory perception, 
to induce euphoria and to increase sociability. Although the 
association between Cannabis sativa and psychopathologic 
conditions had been known for thousands of years, only in 
the last 50 years the identification of the chemical structure 
of marijuana components, cloning of specific cannabinoid 
receptors and discovery of the ECS in the brain has triggered 
an exponential growth of studies to explore its real effects on 
mental health [8, 9]. The Cannabis plant contains over 100 
terpenophenolic pharmacologically active compounds, 
known as cannabinoids. Of these, �9-tetrahydrocannabinol 
(THC), characterized in 1964 [10], was identified as the 
main psychoactive component of Cannabis and later shown 
to act as a direct agonist on cannabinoid CB1 and CB2 re-
ceptors. Other cannabinoids include cannabidiol (CBD), 
cannabichromene and cannabigerol which do not induce any 
THC-like psychoactivity. They act via several mechanisms, 
including modulation of endocannabinoid system tone [11-
13], interaction with transient receptor potential vanilloid 1 
(TRPV1) channels [11] and serotonin 5-HT1A receptors [14], 
and enhancement of adenosine signalling [15, 16]. As re-
cently reviewed, the above mentioned mechanisms could 
underlie the positive effects induced by CBD treatment in 
preclinical and clinical studies of several disorders [17, 18]. 

 In addition, accumulating evidence suggests that the rec-
reational use of Cannabis during adolescence increases the 
relative risk for psychotic disorders. However, it is still un-
known whether Cannabis use is an independent risk factor 
for SCZ or simply that the high prevalence of Cannabis use 
in SCZ patients as an attempt of self-medication due to Can-
nabis’s euphoric effects and increased sociability to relieve 
negative symptoms [19, 20]. Furthermore its use may instead 
contribute as an environmental risk factor in vulnerable indi-
viduals with genetic mutation of COMT (Catechol-O-
methyltransferase) enzymes [21] given that the majority of 
Cannabis users do not develop SCZ. Multiple lines of evi-
dence have shown that frequent Cannabis consumption 
could down regulate anandamide (AEA) signalling in 
schizophrenic but not in healthy individuals. Also, it is asso-

ciated to brain abnormalities in regions which are known to 
be rich in CB1 receptors such as the anterior and posterior 
cingulated cortex, as suggested by magnetic resonance imag-
ing studies [22-25]. Although the exact relationship between 
Cannabis and SCZ is not fully elucidated, alterations of ECS 
elements as receptors and their endogenous activators seem 
to be involved in pathophysiology of SCZ. More specifi-
cally, previous studies have reported an increase in CB1 re-
ceptor binding in prefrontal area of brains from schizo-
phrenic patients [26-31]. However, other studies failed to 
demonstrate any alteration [32] or reduction of CB1 density 
on the neuronal surface [33] and CB1 mRNA expression 
[34]. This contradiction might result from other neuroplastic 
alterations which further complicate the situation as another 
study detected lower CB1 receptor density but no differences 
on the level of CB1 mRNA expression [35]. Although sev-
eral confounding factors such as Cannabis consumption, 
treatment with antipsychotics or different biochemical tech-
niques used for the determination of CB1 receptors density 
and proteosynthesis might explain the apparent opposite re-
sults; in general, the presence of a dysfunction in CB1 recep-
tors in selected brain regions of patients is supported. Fur-
thermore, polymorphisms in the CB1 receptor gene CNR1, 
which could be correlated with an increased probability to 
develop psychosis, have also been described. Yet, the data 
are still controversial [23, 36-39].  

 Recently, the potential involvement of CB2 receptors in 
the pathogenesis of SCZ has been also supported by clinical 
findings. Patients with first-episode psychosis have a de-
creased expression of peripheral CB2 receptors in compari-
son to healthy controls [40, 41], which is in accordance with 
preclinical studies [42]. Thus, the altered expression of both 
receptors in SCZ patients confirms that they possess a cer-
tain homeostatic role.  

 Besides CB receptor dysfunctions, alteration in endocan-
nabinoid levels seems to be implicated in the pathophysiol-
ogy of SCZ as well. AEA levels have been found elevated in 
cerebrospinal fluid which were negatively correlated with 
psychotic symptoms and normalized by treatments with 
typical antipsychotics [43, 44]. In contrast, Muguruza et al. 
showed in cerebellum, hippocampus and prefrontal cortex  
of schizophrenic subjects lower AEA and higher 2-
arachidonylglycerol (2-AG) levels [45]. Considering the 
glutamate hypothesis of SCZ and the role of 2-AG in the 
modulation of glutamatergic neurotransmission, this could 
represent an adaptive response to reduce glutamatergic hy-
peractivity in schizophrenics. Yet, it must be taken in to ac-
count that these alterations in opposite directions may be due 
to the different regulation of 2-AG and AEA levels under 
both physiological and pathological conditions [46]. Moreo-
ver, the difference of endocannabinoid levels in cerebrospi-
nal fluid may be related to alterations in peripheral amounts 
of endocannabinoids, so the neuronal origin of the AEA and 
2-AG in the cerebrospinal fluid remain conjectural [45]. 
Evidence of potential endocannabinoid signalling dysregula-
tion in SCZ is also supported by the decreased expression of 
endocannabinoid synthesizing enzymes NAPE (N-acyl-
phosphatidylethanolamine phospholipase) and DAGL (dia-
cylglycerol lipase) in the peripheral blood mononuclear cells 
of patients with first episode of psychosis [40].  
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 Based on the evidence presented above, functional ab-
normalities in the endocannabinoid system could be involved 
in the pathophysiology of SCZ; thus there is increasing in-
terest to explore potential antipsychotic properties of com-
pounds modulating the endocannabinoid signalling. 

2. THE ENDOCANNABINOID SYSTEM (ECS) 

 The endogenous cannabinoid system (ECS) is a neuro-
modulatory system which is involved in a variety of physio-
logical processes both in the brain and in the periphery. 
Within the CNS, it acts at the level of inhibitory and excita-
tory synapses in brain regions involved in emotional or non-
emotional processes, and mediates the effects of THC, the 
main psychoactive constituent of Cannabis [47]. Increasing 
evidence suggest that altered EC signalling could play a role 
in the pathophysiology of several diseases such as pain and 
inflammation [48]; immunological disorders [49, 50]; neu-
rodegenerative [9] and stress-related conditions [51]; obe-
sity, metabolic [52, 53] and cardiovascular [54] diseases; 
cancer [55], gastrointestinal [53, 56] and hepatic [57] disor-
ders. However, the exact pathophysiological mechanisms 
through which the ECS plays are not clearly understood at 
present.  

 The ECS consists of: (1) the cannabinoid receptors CB1 
and CB2 [58-60], (2) the endogenous cannabinoid CB recep-
tor agonists, AEA and 2-AG [61, 62], (3) a specific and not 
yet identified cellular uptake mechanism and [63, 64],  
(4) the enzymes for endocannabinoid biosynthesis: N�acyl-
phosphatidylethanolamine-selective phosphodiesterase or 
glycerophosphodiesterase E1 and diacylglycerol lipase � or � 
[65, 66]; or degradation: fatty acid amide hydrolase (FAAH) 
and monoacylglycerol lipase (MAGL) [67, 68], respectively 
for AEA and 2-AG. Despite it is well accepted that AEA is 
an endogenous agonist for cannabinoid CB1 receptors in the 
brain, some of the typical cannabimimetic effects of AEA 
are still present in transgenic mice lacking CB1 receptors. 
These effects may be due to AEA capability to act as a full 
agonist for the TRPV1 channels [69] resulting in mecha-
nisms distinct from CB1 and CB2 receptors activation. 
However, additional “players” which target TRPV1 and/or 
CB1 receptors, including putative CB1 antagonist peptides 
like hemopressins, peroxisome proliferator-activated recep-
tor-� (PPAR-�) and � (PPAR-�) ligands, such as oleoyletha-
nolamide (OEA) or palmitoylethanolamide (PEA), and N-
arachidonoyl-dopamine (NADA) are described as potential 
members of this signalling system. Although the existence of 
a third cannabinoid receptor subtype has been also suggested 
[70], to date only CB1 and CB2 receptors are recognized as 
G protein coupled receptors for endocannabinoids [71]. 

 The cannabinoid CB1 and CB2 receptors which are en-
coded by two different genes on human chromosomes: 6q14-
q15 (CNR1) and 1p36.11 (CNR2), are 7 transmembrane Gi/o 
coupled receptors that share 44 % protein identity but they 
display different pharmacological profiles and patterns of 
expression, a dichotomy that provides a unique opportunity 
to develop pharmaceutical approaches. The cannabinoid CB1 
receptors are highly expressed in the basal ganglia, frontal 
cortex, hippocampus and cerebellum. They are expressed 
with a moderate/low density in the amygdala, nucleus ac-
cumbens, medulla, periaqueductal gray and thalamus [72]; 

as well as they are also described in non-neuronal cells of the 
brain such as microglia, oligodendrocytes and astrocytes 
[73]. Within these cortical areas, they are expressed at the 
GABAergic interneurons and glutamatergic neurons, which 
are the two major neuronal subpopulations expressing the 
CB1 receptors [74]. These neurotransmitter systems repre-
sent the two major opposing players regulating the excitation 
state of the brain; GABAergic interneurons being inhibitory 
and glutamatergic neurons being excitatory. Recent studies 
have demonstrated that CB1 receptors are also located in 
neurons of the dorsal raphe nucleus and in the nucleus coer-
uleus which are the major source of serotonin and noradrena-
lin in the brain [75, 76]. Thus, the direct or indirect modula-
tion by monoamine activity on GABA and glutamate neu-
rons could underlie the psychotropic and non-psychotropic 
effects of CB1 activation, respectively.  

 The cannabinoid CB2 receptors, also activated by AEA 
and 2-AG, are mostly peripherally located on immunological 
tissues. CB2 receptors are also detected in glia cells and in 
neurons of several brain regions such as cerebral cortex, 
amygdala, hippocampus, hypothalamus and cerebellum but 
in a much lesser extent [77, 78]. They play an important part 
in regulation of pain and inflammation even though recent 
data also suggest their involvement in emotional and non-
emotional processes [79]. The observation that the elements 
of such neuromodulator system are prevalent throughout the 
neuroanatomical structures and circuits implicated in emo-
tionality provides a rationale for the preclinical development 
of agents targeting the ECS to treat multiple psychiatric dis-
orders including SCZ. 

3. EFFECTS OF PHARMACOLOGICAL MANIPULA-
TION OF THE ENDOCANNABINOID SIGNALLING 

IN PRECLINICAL AND CLINICAL STUDIES OF 

SCHIZOPHRENIA 

 Schizophrenia is a unique human disorder characterized 
by specific clinical manifestations such as delusions, thought 
disorders and hallucinations, which was described in 1896 
by Kraepelin as dementia praecox. Due to the nature of the 
disease it is impossible to develop an animal model which 
would fully mimic its symptoms [1]. Thus, a greater under-
standing of the disorder might arise from modelling specific 
signs and symptoms, rather than mimicking the entire syn-
drome. In accordance with this strategy, the most reliable 
behavioural indices of positive symptoms in experimental 
models are hyperlocomotor activity and behavioural stereo-
types which mimic the psychomotor agitation and presence 
of stereotyped behaviours in acutely psychotic patients since 
positive symptoms such as hallucinations and delusions can-
not be measured in animals [80]. These are based on the ra-
tionale that the hyperfunctioning of the mesolimbic DAergic 
system, which seems to underlie the enhanced locomotor 
activity and stereotyped behaviour, is consistent with the 
human conditions where an enhanced subcortical DAergic 
activity plays a pivotal role to precipitate positive symptoms 
[81]. However, some behavioural aspects of SCZ seem to be 
modelled and objectively assessed in rodents. More specifi-
cally, hallmarks of negative symptoms, deficits in social be-
haviour and anhedonia, can be assessed both in humans and 
rodents with the pre-pulse inhibition (PPI) as an index of 
disrupted sensory gating abilities both in schizophrenic pa-
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tients and in experimental animal models [82]. Interestingly, 
the various cognitive deficits in SCZ, as identified by the 
NIH (National Institute of Health) Measurement and Treat-
ment Research to Improve Cognition in Schizophrenia 
(MATRICS) initiative, could be experimentally assessed by 
the use of specific rodent behavioural tasks [83]. As recently 
estimated, more than 20 different rodent models of SCZ have 
been developed, which fit into four different categories de-
pending on the type of manipulation, namely 1) pharmacol-
ogical, 2) genetic, 3) lesion based and 4) neurodevelopmen-
tal models. First experimental models were developed on the 
basis of the theory that SCZ is a disorder related to an exces-
sive DAergic activity; accordingly, the DAergic agents such 
as amphetamine and apomorphine attempt to mimic this fea-
ture. However, due to the increased understanding of the 
genetic basis and potential involvement of glutamate and 
adverse environmental insults, different experimental ma-
nipulations for animal models of SCZ have also been devel-
oped [84].  

 Since the identification of cannabinoid CB1 and CB2 
receptors and their endogenous ligands (AEA and 2-AG), a 
key aspect to assess the function and therapeutic potential of 
the ECS for SCZ treatment has been the availability of selec-
tive pharmacological tools. They vary from directly acting 
compounds, such as agonists and inverse agonists, to agents 
that enhance indirectly endocannabinoid signalling by affect-
ing the cellular reuptake of endocannabinoids (experimental 
agents: AM404 or VDM11) or by inhibiting the hydrolytic 
enzymes FAAH and MAGL (experimental agents: URB597, 
AA-5-HT or JZL184). However, several additional elements 
which can be described as potential members of the  
ECS such as ligands (i.e. noladin, virodhamide), receptors 
(GPR55, PPAR�, TRPV1) and synthetic or degradative 
pathways, could participate in the mechanism of action of 
the compounds described above [85]. 

3.1. Studies on Positive- and Negative-like Symptoms 

 Different substances modulating the endocannabinoid 
signalling have been evaluated in several animal (mostly 
pharmacological) models for affecting positive- and/or nega-
tive-like symptoms of SCZ, as summarized in Table 1. In a 
recent study, Spano et al. have shown that chronic exposure 
to the CB1 agonist WIN55,212-2 reduces phencyclidine 
(PCP)-induced hyperlocomotion [86], in agreement with 
previous studies, showing a reduction of cocaine- or quinpi-
role- induced hyperactive behaviour by direct CB1 activation 
[87, 88]. Interestingly, stereotyped and hyperlocomotor be-
haviours, an index of positive-like symptoms, were also re-
duced by the non-psychoactive component of Cannabis sa-
tiva cannabidiol (CBD) [89-92]. Although in a recent study 
CBD failed to reverse the amphetamine-induced hyperactiv-
ity, it elicited certain neuroprotective effects [93]. In addi-
tional, CBD prevented human experimental psychosis. More 
specifically, it was effective in open case reports and clinical 
trials in psychotics with a remarkable safety profile, [94-97] 
as well as it and others phytocannabinoids such as can-
nabidiolic acid, tetrahydrocannabivarin, tetrahydrocannabi-
varin acid, cannabichromene, cannabichromenic acid, can-
nabigerol, and cannabigerolic acid were patented for their 
use in combination with one or more anti-psychotic medica-
ments to prevent or treat psychosis and psychotic disorders 

[98]. Yet, it is still unknown the exact mechanism(s) of ac-
tion underlying its antipsychotic effects, but it is clear that 
CBD does not only act through ECS (as weak partial antago-
nist at CB1/CB2 receptors or inhibitor of AEA hydrolysis 
and reuptake), but also activates serotonin 5-HT1A or adeno-
sine receptors or targets nuclear receptors of the PPAR fam-
ily as well as modulates ion channels including TRPV1 [18]. 
Regardless the exact mechanism of action, attention has been 
focused on the potential therapeutic use of CBD in further 
mental diseases such as mood (i.e. anxiety and depression) 
and neurodegenerative (Alzheimer’s or Parkinson’s disease) 
disorders [17]. 

 In the last years, selective antagonist/inverse agonists of 
CB1 receptors were some of the most promising molecules 
in pharmacological research for the treatment of obesity and 
addictive disorders. The first such compound was rimona-
bant (SR141716) [99] introduced into clinical practice as 
antiobesity agent in several countries. However, due to the 
higher incidence of psychiatric side effects such as anxiety, 
depression and suicidal tendencies, rimonabant was very 
soon withdrawn from the market [100]. In contrast to CBD, 
the ability of CB1 antagonists on positive-like symptoms is 
still under debate due to the contradictory results. In 1999, 
Poncelet et al. reported that rimonabant as well as clozapine 
or haloperidol antagonized the hyperlocomotor activity in-
duced by d-amphetamine, cocaine and morphine in gerbils 
[101]. Potential therapeutic effects on positive symptoms 
were then also confirmed by Tzavara and colleagues in the 
PCP animal model [102]. However, in other studies, it failed 
to ameliorate the hyperlocomotor activity [103-105] or in-
stead increased stereotype behaviour [106]. Although the 
discrepancies among these studies could be due to interspe-
cies differences, or physiochemical differences between 
drugs or experimental models, the preclinical data described 
above suggest that the CB1 blockade might have a limited 
potential to treat positive symptoms. In line with this con-
cept, AVE1625 (drinabant, so far reported as the CB1 an-
tagonist) has partially reversed the positive-like symptoms in 
experimental models with an improved side effects profile 
[107]. 

 Recently, attention has been drawn to the expression of 
CB2 receptor in the CNS [77, 78]. Further supporting that 
cannabinoid CB2 receptors may play a role in psychiatric 
disorder, it has been seen that pharmacological or genetic 
CB2 receptor blockade increased susceptibility to develop 
positive-like symptoms [41]. As a result, the CB2 agonist 
beta-caryophyllene has been recently patented for potential 
efficacy for SCZ treatment [108]. The ECS seems to play a 
role in the social behaviour of rodents and the resistance of 
negative symptoms to pharmacological interventions; there-
fore, the effects of pharmacological modulation of endocan-
nabinoid signalling on the social deficits of experimental 
models of schizophrenia have been recently examined. Di-
rect activation of CB1 receptors through the use of CB1 ago-
nists WIN55,212-2 or CP55,940 reversed the PCP-induced 
social deficits [86, 109]. Interestingly, the pharmacological 
enhancement of endocannabinoid levels via systemic treat-
ment with the FAAH inhibitor URB597 also reversed the 
social deficits in the PCP model, but at the same time elic-
ited, as well as the cannabinoid CB1 blockade, harmful ef-
fects in the social behaviour of control animals, maybe by 
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Table 1. Effects of pharmacological modulation of the endocannabinoid system on schizophrenia-like symptoms. 

a) Positive-like symptoms 

Mechanism Drug: Effective Dose 

(Range tested) 

Animals Models Behavioral Response Positive Control Ref. 

WIN: 6 (3-6) mg/kg, i.p.  Wistar rats cocaine (10 mg/kg, i.p.) � hyperlocomotion not determined [88] 

CP: (0.0025-

0.01 mg/kg, s.c.) 

Cebus 

monkeys 

d-amphetamine (0.25 mg/kg, s.c.) no effect on arousal 

and stereotypy  

not determined [103] 

CP: 0.1/0.25 (0.01-

0.25) mg/kg, i.p.  

Wistar rats  quinpirole (0.5 mg/kg, i.p.) � hyperlocomotion not determined [87] 

CB1/CB2 

receptor 

agonists: 

 

WIN: 0.3 mg/kg/day, 

i.v. for 14 days 

Lister 

Hooded rats 

PCP (2.5 mg/kg, i.p.) � hyperlocomotion not determined [86] 

RIM: 1/3 (0.3-3) mg/kg, 

i.p. 

Gerbils cocaine (5-15 mg/kg, i.p.) 

d-amphetamine (2.5 mg/kg, i.p.) 

morphine (4 mg/kg, i.p.) 

WIN-55,212-2 (1 mg/kg, i.p.) 

� hyperlocomotion in 

habituated gerbils 

clozapine  

(3 mg/kg, i.p.) 

haloperidol  

(0.1 mg/kg, i.p.) 

[101] 

RIM: 3-10 mg/kg, i.p. Bl6 mice PCP (4 mg/kg, i.p.) 

d-amphetamine (2.5 mg/kg, i.p.) 

� hyperlocomotion not determined [102] 

RIM: (0.0005-5) mg/kg, 

i.p. 

Wistar rats d-amphetamine (3 mg/kg, i.p.) no effect on hyperlo-

comotion and stereo-

typy 

haloperidol  

(0.25 mg/kg, i.p.) 

[104] 

RIM: 0.1-0.5 (0.1-

0.75) mg/kg, s.c. 

Cebus 

monkeys 

d-amphetamine (0.25 mg/kg, s.c.) � arousal  

no effect on stereotypy 

not determined [103] 

RIM: 1 (0.1-1) mg/kg, 

i.p. 

Wistar rats SKF38393 (0.05-1 mg/kg, s.c.) 

quinpirole (0.25 mg/kg, s.c.) 

� stereotypy not determined [106] 

RIM: 1 mg/kg, i.p. Sprague-

Dawley rats 

amphetamine (1 mg/kg, i.p.) no effect on 

hyperlocomotion  

not determined [105] 

CB1 an-

tagonists: 

 

AVE: 1- 3-10 mg/kg, 

i.p. 

Wistar rats MK-801 (0.05 mg/kg, i.p.) � disrupted LI risperidone  

(0.01-1 mg/kg, i.p.) 

[107] 

CB2  

antagonist: 

AM630: 3-30 mg/kg, i.p.  Bl6/JJ mice MK-801 (0.5 mg/kg, i.p.) 

methamphetamine (2 mg/kg, i.p.) 

� hyperlocomotion not determined [41] 

AEA reup-

take inhibi-

tor: 

AM404: 10 μg/rat, i.c.v.  Wistar rats quinpirole (0.25 mg/kg, i.p.) 

 

� hyperlocomotion not determined [156] 

CBD: 30/60 (15-

60) mg/kg, i.p.  

Swiss mice d-amphetamine (5 mg/kg, i.p.) 

ketamine (60 mg/kg, i.p.) 

� hyperlocomotion haloperidol  

(0.15-0.6 mg/kg, 

i.p.) 

clozapine 

(1.25-5 mg/kg, s.c.) 

[91] 

CBD: 20 (5-20) mg/kg, 

i.p.  

Sprague-

Dawley rats 

THC (1 mg/kg, i.p.)  � hyperlocomotion not determined [90] 

CBD: 50 (1-

50) mg/kg/day, i.p. for 3 

weeks 

Bl6/Jarc 

mice 

d-amphetamine (5 mg/kg, i.p.) � hyperlocomotion not determined [89] 

Non-

psychotropic 

cannabinoid: 

 

CBD: (15-60) mg/kg, 

i.p. for 7 days 

Wistar rats d-amphetamine (2 mg/kg, i.p.) no effect on 

hyperlocomotion 

not determined [93] 

�
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(Table 1) contd….. 

b) Negative-like Symptoms 

Mechanism Drug: Effective Dose 

(Range tested) 

Animals  Models Behavioral Response Positive Control Ref. 

WIN: 0.3 mg/kg/day, 

i.v. for 14 days 

Lister 

Hooded rats 

intermittent PCP 

(2.5 mg/kg/day, i.p.) 

� social deficit in PCP 

� social deficit in con-

trol 

not determined [145] 

CP: 0.01 mg/kg, i.p. Wistar rats PCP (5 mg/kg/day, i.p.) twice a 

day for 7 days 

� social deficit in PCP not determined [109] 

CB1/CB2 

agonists: 

 

THC: 2.5 mg/kg/day, 

i.p. (PND37-39); 

5 mg/kg/day, i.p. 

(PND40-43); 

10 mg/kg/day, i.p. 

(PND44-47) 

Sprague-

Dawley rats 

maternal deprivation � aggressive behavior 

of female in the SI 

no effect in the FST 

not determined [157] 

AM251: 0.5 mg/kg/day, 

i.p. for 3 weeks 

Lister 

Hooded rats 

PCP (2.58 mg/kg/day, i.p.) for 4 

weeks 

� immobility time in 

the FST 

clozapine  

(5 mg/kg/day, i.p.) 

for 3 weeks 

[115] 

AM251: 0.5 mg/kg/day, 

i.p. for 3 weeks 

Lister 

Hooded rats 

social isolation � aggressive behavior 

in the SI 

not determined [129] 

CB1 antago-

nists/invesre 

agonists: 

AM251: 3 (0.3-

3) mg/kg, i.p.  

RIM: 0.3/1 (0.1-
1) mg/kg, i.p.  

Wistar rats PCP (5 mg/kg/day, i.p.) twice a 

day for 7 days 

� social withdrawal in 

control rats 

not determined [109] 

TRPV1 an-

tagonist: 

capsazepine: 1 (1-

10) mg/kg, i.p.  

Wistar rats PCP (5 mg/kg/day, i.p.) twice a 

day for 7 days 

� social withdrawal in 

control rats 

not determined [109] 

FAAH in-

hibitor: 

URB597: 

0.1/0.3/1 mg/kg, i.p. 

Wistar rats PCP (5 mg/kg/day, i.p.) twice a 

day for 7 days 

� social withdrawal in 

PCP rats 

� social withdrawal in 

control rats 

not determined [109] 

Table 1. The table summarizes the effects of direct pharmacological manipulation of the endocannabinoid signalling on positive and negative-like symptoms in rodent models of 
schizophrenia. Acronyms: THC: �9-tetrahydrocannabinol, AEA: anandamide, CBD: cannabidiol, CP: CP55940, FAAH: fatty acid amide hydrolase, FST: forced swim test, i.c.v.: 

intracerebroventricular, i.p.: intraperitoneal, i.v.: intravenous, LI: latent inhibition, PCP: phencyclidine, PND: postnatal day, RIM: rimonabant (SR141716), s.c.: subcutaneous, SI: 
social interaction, TRPV1: transient receptor potential vanilloid 1 channels, WIN: WIN55,212-2. 

 
disturbing the ECS tone through the activation of TRPV1 
channels [109, 110]. In accordance, it has been seen that 
chronic Cannabis consumption improves negative symptoms 
in schizophrenic subjects [111, 112], as well as it also in-
duces an amotivational syndrome, which mimics negative 
symptoms in non schizophrenics [113]. This suggests differ-
ent effects of cannabinoids on healthy or schizophrenic sub-
jects. Chronic treatment with the CB1 receptor antagonist 
AM251 counteracted the aggressive behaviour and reversed 
the PCP-induced immobility in the forced swim test which 
was accompanied by the rescue of CB1 receptor functional-
ity in a neurodevelopmental animal model based on a social 
isolation procedure [114, 115]. Although the genetic CB1 
disruption in mice was also able to counteract the PCP-
induced social deficit [116] further supporting the potential 
antipsychotic properties of the CB1 blockade, human ex-
perimental studies have so far shown controversial results. 
More specifically, Meltzer et al. have not seen a clinical im-
provement in schizophrenic patients after rimonabant treat-
ment. In contrast, Kelly et al. found a significant reduction 
of psychotic symptomatology in obese patients with SCZ 
[117, 118]. Thus, further clinical studies are necessary to 

elucidate the therapeutic potential of CB1 antagonists. To 
date, several compounds of this pharmacodynamic profile 
have been patented for potential efficacy for treating SCZ 
symptoms [119-123]. 

3.2. Studies on Cognitive/Attention Deficits 

 It has become clear that SCZ cannot be reduced to its 
psychotic symptoms and the cognitive deficits of these pa-
tients are the most debilitating and remain resistant to 
treatment. Thus, the development of new drugs has been 
hampered by the lack of existing drugs for treating the cog-
nitive impairment in schizophrenic patients, since there is 
not gold standard positive control drug that can be used in 
cognitive assays. Thus, in light of the high density of can-
nabinoid CB1 receptors in cortical regions involved in cog-
nition and memory processes, the cognitive effects of the 
modulation of the endocannabinoid signalling could be one 
of the potential pharmacological targets for the SCZ treat-
ment. The existing evidence of involvement of ESC in the 
cognitive/attention processes in animal models of SCZ is 
presented in the Table 2. 
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Table 2. Effects of pharmacological modulation of the endocannabinoid system on cognitive/attention deficits of a schizophrenia-

like phenotype. 

Mechanism Drug: Effective 

Dose (Range tested) 

Animals Models Behavioral Response Positive Control Ref. 

THC: 0.5 mg/kg/day, 

i.p. for 3 weeks 

Lister 

Hooded rats 

PCP (2.58 mg/kg/day, i.p.) for 

4 weeks 

� cognitive deficit clozapine 

(5 mg/kg/day, i.p.) for 

3 weeks 

[126] 

THC: 0.3/1/3 mg/kg, 

i.v.  

Sprague-

Dawley rats 

social isolation � disruption of PPI not determined [144] 

WIN: 3 mg/kg, i.p. Bl6/J psychosocial stress � disruption of PPI not determined [143] 

THC: 2.5 mg/kg/day, 

i.p. (PND35-37);  

5 mg/kg/day, i.p. 

(PND38-41);  

10 mg/kg/day, i.p. 

(PND42-45) 

Sprague-

Dawley rats 

maternal deprivation � cognitive deficit in con-

trol female  

 

not determined [157] 

CB1/CB2 
receptor 
agonists: 

 

WIN: 0.3 mg/kg/day, 

i.v. for 14 days 

Lister 

Hooded rats 

chronic PCP 

(2.5 mg/kg/day, i.p.) 

� disruption of PPI 

� cognitive deficit 

not determined [145] 

RIM: (0.3-5) mg/kg, 

i.p. 

Sprague-

Dawley rats 

apomorphine (0.5 mg/kg, s.c.) 

MK-801 (0.1 mg/kg, s.c.) 

d-amphetamine (5 mg/kg, s.c.) 

no effect on PPI clozapine (10 mg/kg, 

i.p.); olanzapine 

(10 mg/kg, i.p.); 

haloperidol 

(0.3 mg/kg,1 i.p.) 

[104] 

RIM: 3 (0.3-

3) mg/kg, i.p. 

Swiss mice apomorphine (3 mg/kg, i.p.) � disruption of PPI not determined [150] 

AM251: 

0.5 mg/kg/day, i.p. 

for 3 weeks 

Lister 

Hooded rats 

PCP (2.58 mg/kg/day, i.p.) for 

4 weeks 

� cognitive deficit  clozapine 

(5 mg/kg/day, i.p.) for 

3 weeks 

[130] 

AM251: 

0.5 mg/kg/day, i.p. 

for 3 weeks 

Lister 

Hooded rats 

social isolation � cognitive deficit  not determined [129] 

AM251: 

0.5 mg/kg/day, i.p. 

for 3 weeks 

Lister 

Hooded rats 

social isolation � disruption of PPI  not determined [114]  

AM251: 1 mg/kg, 

i.p. 

Wistar rats PCP (5 mg/kg/day, i.p.) twice 

a day for 7 days 

� cognitive deficit in PCP  

� cognitive deficit in 

control 

not determined [110] 

CB1 antago-

nists/inverse 

agonists: 

 

RIM: 

0.75/1/3 mg/kg, s.c. 

AM251: 

1.4/1.8 mg/kg, s.c. 

Sprague-

Dawley rats 

PCP (1.25 mg/kg, s.c.) � disruption of PPI clozapine (7.5 mg/kg, 

i.p.) 

[149] 

CB2 antago-

nist: 

AM630: 30 (3-

30) mg/kg, i.p.  

 

Bl6/6JJmsSlc

mice 

MK-801 (0.5 mg/kg, i.p.) 

methamphetamine (2 mg/kg, 

i.p.) 

� disruption of PPI in 

MK-801 mice 

no effect on PPI in meth-

amphetamine pretreated 

mice 

not determined  [41] 

FAAH Inhibi-

tor: 

URB597: 0.3 mg/kg, 

i.p.  

Wistar rats PCP (5 mg/kg/day, i.p.) twice a 

day for 7 days 

� cognitive deficit not determined [110] 

CBD: 0.5 mg/kg, i.m. Rhesus mon-

keys 

THC (0.2-0.5 mg/kg, i.m.) � cognitive deficit not determined [138] Non-

psychotropic 

cannabinoid: 
CBD: 5 (1-15) mg/kg, i.p Swiss mice MK-801 (1 mg/kg, i.p.) � disruption of PPI clozapine (4 mg/kg, i.p.) [154] 

Table 2. The table summarizes the effects of direct pharmacological manipulation of the endocannabinoid signalling on cognitive/attention deficits in rodent models of schizophrenia. 
Acronyms: THC: �9-tetrahydrocannabinol, CBD: cannabidiol, FAAH: fatty acid amide hydrolase, FST: forced swim test, i.c.v.: intracerebroventricular, i.m.: intramuscular, i.p.: 

intraperitoneal, i.v.: intravenous, LI: latent inhibition, PCP: phencyclidine, PND: postnatal day, PPI: prepulse inhibition, RIM: rimonabant (SR141716), s.c.: subcutaneous, SI: social 
interaction, WIN: WIN55,212-2. 
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 Acute administration of the main pharmacologically ac-
tive principle of the Cannabis sativa, THC, as well as the 
CB1 agonists such as WIN55,212-2, CP55,940 or AEA in-
duce in animals and healthy humans memory deficits similar 
to those seen in SCZ, which could be mediated through a 
disruption of prefrontal and hippocampal functions [124, 
125]. However, in the PCP-induced animal model controver-
sial data have been obtained following CB1 activation. 
While Vigano and colleagues found that chronic THC treat-
ment in juvenile rats worsened cognitive impairment [126], 
by contrast the CB1 agonist WIN55, 212-2 attenuated the 
PCP cognitive deficits in adult rats [86]. Although the 
authors used the same experimental model, the discrepancies 
between these studies could be due to either physiochemical 
differences between CB1 agonists or the different age of 
pharmacological treatment (juvenile vs. adult). Furthermore, 
Seillier and colleagues found that indirect activation of CB1 
receptors through the use of FAAH inhibitor URB597 
caused working memory deficits in saline treated rats com-
parable to those after PCP treatment, which may arise due to 
perturbing the endocannabinoid tone [110]. In contrast, other 
evidence from animal studies suggests that pharmacological  
CB1 receptor blockade could exert promnesic effects. In this 
context, it has been seen that the memory disruptive  
effects induced by CB1 agonists such as THC, AEA or 
WIN55,212-2 were counteracted by rimonabant treatment 
[124, 127, 128]. Furthermore, the CB1 receptor antago-
nist/inverse agonist AM251 reversed memory impairment in 
pharmacological and neurodevelopmental models of SCZ 
[110, 114, 129, 130]. Despite potential pro-cognitive effects 
of CB1 antagonists described above, in the few clinical stud-
ies assessing its role on cognitive functioning in human, ri-
monabant worsened ketamine induced deficits [131] or did 
not improve global cognitive functioning. In this later study 
just a specific learning deficit in schizophrenic patients based 
on response to positive feedback was recorded [132]. In a 
recent clinical trial assessing the potent and selective CB1 
antagonist AVE1625 for improving cognitive deficits in 
schizophrenic, there was an insufficient efficacy of the 
treatment (Clinical Trials.gov identifier: NTC00439634). 
The withdrawal of rimonabant, due to the psychiatric side 
effects in the metabolic syndrome treatment, interrupted the 
entire industrial development of CB1 antagonists/inverse 
agonists. However, several CB1 receptor inverse agonist 
compounds have been patented for the treatment of cognitive 
impairment associated with SCZ [133, 134]. Thus, a possible 
solution for the safe use of this class of compounds could be 
to determinate which patients are at high risk of psychiatric 
side effects through detailed phenotypic assessment and ge-
netic testing [135] or change to the use of neutral CB1 an-
tagonist [136, 137]. 

 Clinical and preclinical data suggest that CBD which is 
the most extensively investigated phytocannabinoid for po-
tential use in psychiatric disorders, is also able to ameliorate 
cognitive deficits. More specifically, it was able to reverse 
the THC-induced deficits in rhesus monkeys [138], as well 
as THC induced cognitive impairment in human [139]. 
Moreover, CBD effects on cognitive function in schizo-
phrenic patients are currently under investigation in a  
phase II clinical trial (Clinical Trials.gov identifier: 
NCT00588731). Patients with SCZ exhibit deficits in an 

operational measure of sensorimotor gating: pre-pulse inhibi-
tion (PPI) of startle reaction. Similar deficits in PPI are pro-
duced in animals by pharmacological or developmental ma-
nipulations. These experimentally induced PPI deficits in 
rats clearly do not represent animal models of schizophrenia 
per se, but provide us an investigative tool with high face, 
predictive, and construct validity for sensorimotor gating 
deficits in SCZ patients [140]. To confirm that younger ani-
mals have different vulnerability to cannabinoid treatment in 
development of SCZ-like symptoms, rats treated at adult-
hood with CB1 receptor agonist WIN55,212-2 have not 
shown disruption of PPI [141]; in comparison, the pre-
pubertal CB1 agonist treatment induced PPI deficits in adult 
age [142]. However, at adulthood, WIN55,212-2 and THC 
improved and impaired the PPI of the startle response in 
psychosocially stressed rodents, respectively [143, 144]. 
Discrepancies between these studies could be due to inter-
species (rat vs. mice) dissimilarities in response to treatments 
(e.g. pharmacokinetic issues), to physiochemical characteris-
tics of the specific compounds (THC vs. WIN) and to the 
different experimental procedures. Nevertheless, in an ex-
perimental model of SCZ, CB1 agonist WIN 55,212-2 was 
able to attenuate the PCP-induced deficit in PPI [145]. Con-
troversial data were obtained following enhancement of 
AEA level through the use of AM404, an AEA reuptake 
inhibitor. While in mice AM404 disrupts sensorimotor gating 
[146]; in contrast it was ineffective in the PPI test in rats [147], 
suggesting an interspecies (rats vs. mice) difference in the 
response to the pharmacological modulation of AEA levels.  

 The potential antipsychotic properties of CB1 antagonists 
have also been explored in the impaired sensorimotor gating, 
as a model of perceptual distortion [148]. It has been seen 
that the antagonists/inverse agonists rimonabant and AM251 
reversed the disrupted PPI in several experimental models of 
SCZ, similarly as the conventional neuroleptics [114, 149, 
150]. On the other hand, the genetic blockade of CB1 signal-
ling resulted in unaltered PPI response, as shown by the phe-
notype of mice with a complete deletion of CB1 receptors; 
however, they have shown a decreased parvalbumin 
immunoreactivity in the cortex and striatum, which is typical 
in schizophrenic human subjects [151, 152]. Again it is still 
unknown the exact mechanisms underling these discrepan-
cies, but compensatory mechanisms in knock out mice could 
be involved. Given recent attention has been drawn to the 
role of CB2 receptors in psychiatric disorders, preclinical 
and clinical data indicate that a reduced CB2 signalling elic-
ited a sensorimotor gating and an increased risk of SCZ in 
human, respectively [41, 42]. The potential antipsychotic-
like property of CBD have also been supported by its ability 
to reverse the sensorimotor gating deficits in different ex-
perimental models, similarly to that induced by clozapine 
[153, 154].  

4. CURRENT & FUTURE DEVELOPMENTS 

 As outlined above, preclinical and clinical evidence 
strongly suggest a dysregulation of the ECS in schizophre-
nia, such as abnormalities in cannabinoid (CB1 and/or CB2) 
receptor function and endocannabinoid (AEA and/or 2-AG) 
levels in different cerebral areas. However, so far, the full 
picture on the role of the endocannabinoid system in this 
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pathology has yet to emerge. To date, the pharmacotherapy 
of negative symptoms and cognitive deficits of SCZ has 
been disappointing; as antipsychotics have not met the ex-
pectations and the development of more effective therapies 
have been inadequate [155]. Thus, the ability of cannabi-
noids to modulate schizophrenia-like symptoms is extremely 
attractive for the development of novel antipsychotics 
agents. Although use of CB1 antagonists/inverse agonists is 
hampered by unwanted psychiatric side effects and that the 
possibly safer direct modulation of CB2 receptors still lacks 
sufficient experimental evidence to justify its use, the use of 
CBD has produced very promising results in animal models 
with a pharmacological profile resembling that of atypical 
antipsychotics. Clinical evidence also suggests that CBD, 
being devoid of psychotropic activity, could represent a reli-
able compound for psychosis in schizophrenia especially in 
view of its lack of extrapyramidal side effects [96]. Further 
clinical studies will determine if CBD treatment would be 
the novel pharmacotherapy for the disturbances in the social 
and cognitive functions in schizophrenic patients. 
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