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1 Introduction

For centuries, hashish and marihuana, both derived from the Indian hemp Cannabis sativa L., 
have been used for their medicinal, as well as, their psychotropic effects. Phytocannabinoids 

are oxygen containing C21 aromatic hydrocarbons found in Cannabis sativa L. To date, over 

120 phytocannabinoids have been isolated from Cannabis, including two compounds, (−)-

trans-Δ9-tetrahydrocannabinol (Δ9-THC) and (−)-trans-Δ8-THC (Δ8-THC) that have been 

shown to bind to cannabinoid receptors and elicit the characteristic psychotropic effect 

associated with Cannabis [1]. These compounds also have beneficial effects, such as appetite 

stimulation [2], analgesia [3], anti-glaucoma [4] and anti-emetic effects [5]. Non-

psychotropic phytocannabinoids are currently emerging as key constituents of Cannabis as 

well. For example, the non-psychotropic phytocannabinoid, CBD, is of great interest 

because of its anti-inflammatory, analgesic, anti-anxiety and anti-tumor properties [6]. For 

many years, it was assumed that the beneficial effects of the cannabinoids were mediated by 

the cannabinoid receptors, CB1 and CB2. However, today we know that the picture is much 

more complex, with the same phytocannabinoid acting at multiple targets. This chapter 

focuses on the molecular pharmacology of the phytocannabinoids, including Δ9-THC and 

CBD, from the prospective of the targets at which these important compounds act.

2 Pharmacology of selected phytocannabinoids

To date over 120 cannabinoids, the so-called phytocannabinoids (pCB), have been isolated 

from the cannabis plant. Contrary to other naturally occurring drugs, such as opioids, 

nicotine, cocaine or caffeine, cannabinoids do not contain nitrogen, and hence are not 

alkaloids. Most phytocannabinoids share common structural features that include a 

dibenzopyran ring and a hydrophobic alkyl chain. The most abundant cannabinoids in the 

plant are Δ9-tetrahydrocannabinol (Δ9-THC), Δ8-tetrahydrocannabinol (Δ8-THC), 

cannabinol (CBN), cannabidiol (CBD), cannabigerol (CBG), and cannabichromene (CBC), 

Δ9-tetrahydrocannabivarin (THCV), cannabivarin (CBV),cannabidivarin (CBDV) (Figure 1). 

Despite their lower presence in the plant, other phytocannabinoids such as cannabinodiol 
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(CBND), cannabielsion (CBE), cannabicyclol (CBL) and cannabitriol (CBT) have also been 

the subjects of study in the last decades (Figure 2) [7].

Phytocannabinoids show different affinities for CB1 and CB2 receptors. In addition, over the 

last years, molecular targets outside the endocannabinoid system have been identified for 

certain plant cannabinoids. These compounds have been shown to interact with other G-

protein coupled receptors such as the putative cannabinoid receptors GPR55 or GPR18, and 

other well-known GPCRs such as the opioid or the serotonin receptors. In addition, several 

papers have reported the ability of certain phytocannabinoids to modulate nuclear receptors, 

ligand-gated ion channels or transient receptor potential (TRP) channels, among others.

2.1 Abundant constituents of cannabis sativa L

Table 1 provides a pharmacology summary for each of the abundant constituents of 

Cannabis.

2.1.1 Δ9- Tetrahydrocannabinol (Δ9-THC)—Δ9-THC is the principal component of the 

cannabis plant. As demonstrated by numerous in vitro and in vivo assays, Δ9-THC is a 

moderate partial agonist of CB1 and CB2 receptors [8–10]. As a partial agonist, it presents a 

mixed agonist-antagonist profile depending on the cell type, expression of receptors and 

presence of endocannabinoids or other full agonists [11]. This compound is largely 

responsible for the pharmacological properties, as well as, the psychoactive effects 

associated with marijuana use. Δ9-THC is also a multitarget ligand, the non-CB1, non-CB2 

activity of this compound is responsible for some of the physiological effects reported for 

this phytocannabinoid in vitro and in vivo.

Conflicting reports about the ability of this phytocannabinoid to modulate the putative 

cannabinoid receptor GPR55 have been published. Δ9-THC exhibits activation of GPR55 in 

[35S]GTPγS binding, RhoA assays and intracellular calcium mobilization in transiently 

transfected hGPR55-HEK293 cells [12–14]. However, this phytocannabinoid was unable to 

stimulate ERK1/2 phosphorylation or β-arrestin recruitment [15–17]. It remains to be 

determined whether this is a consequence of experimental variability, differences in 

functional readouts or GPR55 intrinsic properties. In addition, studies from Anavi-Goffer 

and coworkers [18] have shown that Δ9-THC is able to inhibit the response generated by 

lysophosphatidylinositol (LPI), the proposed GPR55 endogenous ligand. For the putative 

cannabinoid receptor, GPR18, studies in different cell models demonstrate that Δ9-THC acts 

as a potent agonist of this receptor [19, 20].

Δ9-THC has also been proposed to be a serotonin 5HT3A receptor antagonist [21, 22] and an 

allosteric modulator of the opioid receptors [23]. Certain non-GPCRs have also been 

suggested as targets of Δ9-THC. This compound is a peroxisome proliferator-activated 

receptor gamma (PPARγ) agonist. Through this agonistic effects it exerts some of its The 

vascular relaxation and antitumor effects of Δ9-THC have been linked to its agonism at 

PPARγ [24, 25]. Low concentrations of Δ9-THC have been shown to significantly potentiate 

the amplitudes of glycine-activated currents [26, 27]. The activity of Δ9-THC at the glycine 

receptors seems to contribute to the cannabis-induced analgesia in behavioral mice models 

[26].
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Δ9-THC did not show a response at the vanilloid type 1 receptor (TRPV1, also known as the 

capsaicin receptor), whereas several reports describe its agonistic effects at the TRPV2, 

TRPV3, and TRPV4 channels [28–30]. As further detailed in this chapter, Δ9-THC is also an 

agonist of the ankyrin channel TRPA1 and an antagonist of the melastatin receptor TRPM8 

[28, 31].

2.1.2 Δ8- Tetrahydrocannabinol (Δ8-THC)—Δ8-THC is an isobaric isomer of Δ9-THC 

that differs in the position of the double bond (Figure 1). Δ8-THC also displays 

psychoactivity and is chemically more stable than Δ9-THC [32, 33]. Δ8-THC shows 

moderate partial agonistic effects on CB1 and CB2 receptors [34, 35]. Likewise, it exhibits 

similar in vitro and in vivo properties in different studies [32, 36, 37]. There is not much 

literature reported on the activity of Δ8-THC at other targets such as GPR55, GPR18, TRP 

channels or PPAR nuclear receptors. However, this compound will presumably present a 

similar pharmacological profile to Δ9-THC.

2.1.3 Cannabinol (CBN)—Cannabinol is an oxidized metabolite of THC [38]. Its acid 

form is widely present in the plant and CBN is formed upon heating of its acid. CBN is a 

weak psychoactive compound that binds the cannabinoid receptors showing higher affinity 

towards CB2. CBN has been consistently reported to be a weak CB1 agonist, however, 

different results have been found regarding its CB2 modulation. cAMP assays performed by 

Mechoulam and coworkers [39] revealed its agonist capacity, whereas in GTPγS 

experiments, this compound behaved as a CB2 inverse agonist [40]. These divergences may 

be due to the experimental outcome or the dose utilized in each case.

Cannabinol has also shown CB1, CB2 independent activity. This compound is a potent 

agonist of TRPA1 and antagonist of TPRM8 channels [29]. Besides the TRP channels, its 

activity at other receptors outside the endocannabinoid system has not been determined.

2.1.4 Cannabidiol (CBD)—Due to its promising therapeutic effects, cannabidiol is one of 

the most studied cannabinoids today. This non-psychoactive compound has demonstrated 

anti-inflammatory, analgesic, anti-anxiety and anti-tumor properties, among others [6].

Diverse research groups have reported its lack of affinity for the cannabinoid CB1 and CB2 

receptors [41]. However, in vitro studies revealed that CBD displays weak CB1 and CB2 

antagonistic effects [42, 43]. Recent results from Laprairie and colleagues [44], show that 

CBD behaves as an negative allosteric modulator of Δ9-THC- and 2-AG [45]. These results 

may explain some of the in vivo effects of CBD. In addition, CBD is able to inhibit cellular 

uptake of the endogenous CB1 ligand, anandamide, directly affecting endocannabinoid tone. 

At the GPR55 receptor, this non-psychoactive phytocannabinoid acts as an antagonist 

preventing [35S]GTPγS binding and Rho activation [14, 46, 47]. However, CBD was 

inactive in Ca2+ mobilization assays [12] and β-arrestin recruitment [15]. As demonstarted 

by McHugh and coworkers [19, 20], CBD is an antagonist of the putative cannabinoid 

receptor GPR18.

CBD is further involved in the modulation of different receptors outside the 

endocannabinoid system (ECS). The serotonin receptors have been implicated in the 
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therapeutic effects of CBD. Different studies revealed that this phytocannabinoid acts as a 

full 5HT1A agonist, a 5HT2A weak partial agonist and a non-competitive antagonist of 

5HT3A [48–50]. The ability of CBD to activate the A1A adenosine receptors has also been 

proposed [51]. Its activity at these receptors could mediate the anti-inflammatory and 

immunosuppressive effects of CBD. The activity of CBD at the nuclear receptors PPARγ 
[52–54], the ligand-gated ion channels glycine [55, 56] and GABAA receptors [57], or at the 

transient receptor potential channels [29, 30] is summarized in Table 1.

Despite all of this pharmacological data, the mechanistic bases of the CBD effects remain 

unclear. Therefore, great efforts are currently being made to fully elucidate the molecular 

pharmacology of CBD.

2.1.5 Cannabigerol (CBG)—CBG is a non-psychoactive phytocannabinoid found in high 

concentration in the plant; its carboxylic acid form (CBDA, cannabigerolic acid) is the 

precursor of other important phytocannabinoids. CBG has low affinity for the cannabinoid 

CB1 and CB2 receptors [58–60], but it affects the endocannabinoid system because of its 

ability to inhibit anandamide (AEA) uptake [29]. CBG has also been shown to weakly 

inhibit the LPI response in GPR55 assays [18]. The non-cannabinoid activity reported for 

CBG involves its ability to potently activate the α2 adrenergic receptor and moderately 

block the serotonin 5HT1A receptor [61].

As with many other phytocannabinoids, CBG interacts with different TRP channels acting 

as a weak TRPV1 and TRPV2 agonist, a potent TRPM8 antagonist, and a potent TRPA1 

agonist [29, 31].

2.1.6 Cannabichromene (CBC)—Cannabichromene (CBC) is one of the most abundant 

phytocannabinoids in the plant; it was discovered in 1966 by Gaoni and Mechoulam [59]. 

This phytocannabinoid does not display significant affinity for the cannabinoid CB1 and 

CB2 receptors [58]. Nonetheless, it directly influences the endocannabinoid system by 

inhibiting anandamide (AEA) uptake [29]. The more relevant pharmacological activity of 

CBC explored so far, is at TRP channels. Among the phytocannabinoids tested by De 

Petrocellis and coworkers [29], CBC is the most potent agonist of the TRPA1 channels. 

Although at a lower potency, CBC is also able to activate TRPV3 and TRPV4, and block 

TPRM8 receptors in the same cellular and functional outcome [29, 30].

2.1.7 Δ9- Tetrahydrocannabivarin (Δ9-THCV)—THCV is a propyl analogue of 

tetrahydrocannabinol. Even though it only varies from Δ9-THC by the length of its lipophilic 

alkyl chain, it possesses a different pharmacological profile at certain molecular targets.

Discrepancies have been found regarding its activity at CB1 receptors. Although the in vitro 
evaluation of this compound consistently displays antagonistic/inverse agonistic effects [62–

64], at higher doses, the in vivo effects indicate agonism in an antinociception model [65]. 

THCV is a CB2 partial agonist as demonstrated in different in vitro and in vivo assays [66]. 

Recent studies suggest that this phytocannabinoid is a partial agonist of GPR55 being also 

able to inhibit the activity of the full agonist LPI [18]. Beyond the endocannabinoid system, 
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THCV has been reported to activate 5HT1A receptors [67], as well as different TRP channels 

subtypes [29] (Table 1).

2.1.8 Cannabivarin (CBV)—Cannabivarin (CBV) is a non-psychoactive 

phytocannabinoid found in the plant in low concentrations. It is a propyl derivative of 

cannabinol and can be obtained as an oxidation product of tetrahydrocannabivarin [68–70]. 

Its pharmacology has not been explored so far.

2.1.9 Cannabidivarin (CBDV)—Cannabidivarin (CBDV) is a propyl analogue of CBD 

that lacks psychoactive properties. This compound displays very weak affinity for CB1 and 

CB2 receptors [58, 71]. Its ability to inhibit the activity of the putative endogenous ligand 

LPI has been reported in hGPR55-HEK293 cells [18].

Molecular targets outside the ECS have also been found for CBDV. The TRP channels are 

tightly involved in the therapeutic potential of this phytocannabinoid. CBDV potently 

activates human TRPA1 channel, being a weak agonist of the TRPV1, TRPV2 and TRPV3 

cation channels [29, 30].

2.2 Less abundant constituents of cannabis sativa L

Other compounds from the cannabis plant have been identified and structurally 

characterized. Total synthesis approaches have been intended for some of them, but the 

pharmacology of these phytocannabinoids has not been properly studied. Indeed, to the best 

of our knowledge, their activity at the well-known cannabinoid CB1 and CB2 receptors, or 

other molecular targets has not been reported so far.

2.2.1 Cannabinodiol (CBND)—Cannabinodiol (CBND) is a fully aromatized CBD 

analogue which was first characterized in 1977 [72]. This phytocannabinoid can be obtained 

as a product of CBD photochemical conversion. Although its concentration in the plant is 

quite low, CBND is one of the psychoactive compounds found in the plant’s flowers [73]. 

There is no available experimental data at present related to its pharmacological action on 

specific targets.

2.2.2 Cannabielsoin (CBE)—Cannabielsoin (CBE) is a phytocannabinoid metabolite 

which can be produced by photo-oxidation from CBD and CBDA [74, 75], or by 

biotransformation using tissue cultures under normal growth conditions [76, 77]. The ability 

of this compound to modulate the cannabinoid CB1 and CB2 receptors has not been 

described thus far.

2.2.3 Cannabicyclol (CBL)—Cannabicyclol (CBL) is a photochemical product that 

originates from the phytocannabinoid cannabichromene under heating conditions [78, 79]. 

This is important to take into account when considering that cannabis is frequently smoked 

for both medicinal and recreational purposes. No pharmacological evaluation of this 

phytocannabinoid has been reported.

2.2.4 Cannabitriol (CBT)—Cannabitriol (CBT) was first isolated by Obata and Ishikawa 

in 1966 [80], but the structures of its cis and trans isomers were not fully determined until 
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years later [73, 81]. CBT has been synthesized by antibody-catalyzed oxidation of Δ9-THC 

[82]. No pharmacological evaluation of this phytocannabinoid has been reported.

3 Molecular targets of phytocannabinoids

3.1 G-Protein Coupled Receptors

Many of the phytocannabinoids interact with the cannabinoid CB1 and CB2 receptors. The 

cannabinoid CB1 [84] and CB2 [85] receptors belong to the Class A (rhodopsin (Rho) 

family) of G-protein coupled receptors (GPCRs). Figure 3A illustrates that the general 

topology of a Class A GPCR includes: (1) an extracellular (EC) N terminus; (2) seven 

transmembrane alpha helices (TMHs) arranged to form a closed bundle; (3) loops 

connecting TMHs that extend intra- and extracellularly; and, (4) an intracellular (IC) C 

terminus that begins with a short helical segment (Helix 8) oriented parallel to the membrane 

surface. Ligands for Class A GPCRs are generally thought to enter the receptor via the 

extracellular space. Figure 3B illustrates an extracellular view of the 2.8 Å resolution mu 

opioid receptor structure (PDB entry 4DKL). Here you see the opening that allows the 

ligand, beta-funaltrexamine to descend into the receptor binding pocket.

The docking of a GPCR agonist ligand triggers a conformational change in the receptor on 

its intracellular (IC) side most commonly by altering the proline kink angle in the TMH6 

CWXP motif, allowing TMH6 to straighten. This change in angle breaks the IC salt bridge 

between R3.50 and D/E6.30 that maintains the GPCR inactive state. The overall 

conformational change creates an IC opening that allows the G-protein alpha-5 helix (which 

is located intracellularly) to insert into the receptor opening and form a receptor/G-protein 

complex. This, then, is the beginning of signal transduction.

In many ways the CB1 and CB2 receptors are atypical within the Class A GPCRs [86]. The 

endogenous ligands for these receptors, sn-2-arachidonoylglycerol (2-AG) (CB1 and CB2) 

[87, 88] and anandamide (CB1) [89] are lipid-derived agonists that are made on demand 

from the lipid bilayer and degraded by membrane associated enzymes [90–92], negating the 

need for vesicle storage. The CB1 receptor and its endogenous ligand, 2-AG have been 

shown to mediate depolarization-induced suppression of inhibition (DSI) and 

depolarization-induced suppression of excitation (DSE), at GABAergic and glutamatergic 

synapses [93]. To accomplish this regulation of neurotransmission, CB1 has a presynaptic 

location, an atypical location for neuronal GPCRs. Although neither cannabinoid receptor 

has yet been crystallized, two Class A GPCRs that recognize lipid-derived ligands have been 

crystallized. This includes the S1P1 receptor, which has over 60% homology with hCB1 in 

the transmembrane helix (TMH) regions and whose endogenous ligand is also lipid-derived, 

sphingosine-1-phosphate [94]. The second GPCR is GPR40 which binds long chain free 

fatty acids [95]. Two very striking features are evident in these crystal structures: (1) the 

extracellular domain of the receptor is completely covered by either the N-terminus [85] or 

the EC-2 loop [95], precluding ligand access from the EC milieu; (2) portals between TMHs 

through which ligands can be shuttled have been identified for each of these receptors and 

the location of the TMH portal varies between receptors and is dependent on the sequence of 

each receptor [86]. For the S1P1 receptor, the N-terminus occludes the binding site. Instead 
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a portal between TMH1 and TMH7 allows ligand access from the lipid bilayer. This is 

illustrated in Figure 4 (PDB 3V2Y; antagonist, ML056 bound; 2.8 Å resolution).

How do phytocannabinoids reach the CB1/CB2 binding domain?—Molecular 

dynamics (MD) simulations reported by the Reggio lab have suggested that for CB1 and 

CB2, there is a ligand portal between TMH6 and TMH7 [96]. Figure 5 illustrates the 

CB1/CB2 ligand, 2-AG entering the CB2 receptor via the lipid bilayer. This result is 

supported experimentally by covalent labeling studies from the Makriyannis lab which 

pinpoint C6.47 (a lipid facing TMH6 residue) in CB1 and CB2 as the residue covalently 

labeled by the classical cannabinoid, AM841 which is isothiocyanate derivatized. This 

labeling of a lipid facing residue occurs despite the fact that other Cys residues face into the 

ligand binding pocket and are extracellular to C6.47 [97, 98].

Thus, for the cannabinoids, it is likely that high ligand lipophilicity is required for ligand 

access to the entry portal into CB1 or CB2. Table 2 provides calculated QlogP values for the 

phytocannabinoids. Here it is clear that the phytocannabinoids do possess high lipophilicites.

Table 1 lists additional Class A GPCRs that have been implicated in various 

phytocannabinoid actions. These include the putative cannabinoid receptors GPR55 and 

GPR18; the serotonin-1A, -2A, -3A receptors (5HT1A 5HT2A 5HT3A), the μ - and δ-opioid 

(MOR and DOR) receptors,; the adenosine A1A, receptor; and, the α2-adrenergic receptor 

(α2-AR).

3.2 Beyond GPCRs: PPARs, GlyR and TRP channels

3.2.1 Peroxisome Proliferator-Activated Receptors (PPARs)—In the last decade, 

increasing research has shown that cannabinoids can modulate peroxisome proliferator-

activated receptors (PPARs) [99–102]. Some of the physiological responses triggered by 

phytocannabinoids are partially mediated by these nuclear hormone receptors which control 

the transcription of target genes. Activation of PPARα and PPARγ isoforms is associated 

with some of the neuroprotective, antinociceptive, antiproliferative, anti-inflammatory and 

metabolic properties of cannabinoids. Therefore, the activity of phytocannabinoids at these 

receptors is tighly related with its therapeutic potential for the treatment of pathologies such 

as cancer, diabetes, obesity, as well as cardiovascular or neurodegenerative disorders.

How do phytocannabinoids reach the PPAR binding domain?: Several reports have 

revealed that certain phytocannabinoids, especially Δ9-THC and CBD, can activate the 

transcriptional activity of PPARs and these effects can be blocked by PPAR antagonists. 

However, the mechanisms facilitating this activity are still under investigation [99, 101]. 

Based on different studies, direct binding of cannabinoids to the PPAR isoforms has been 

proposed [103, 104]. The PPAR ligand binding domain has an extensive secondary structure 

consisting of 13 alpha helices and a beta sheet. Many PPAR crystal structures, including a 

PPARγ complex with the THC acid synthetic analogue, ajulemic acid (AJA), have been 

already solved [104]. This crystallographic study revealed a low occupancy of the binding 

pocket explaining the structural basis for the weak PPAR activation produced by 

cannabinoids. On the other hand, metabolism of cannabinoids to active PPAR binders has 

also been suggested as a potential mechanism of interaction with these transcription factors 
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[105]. Another possible mechanism triggering cannabinoid-PPAR interaction is the active 

transport of cannabinoid to the nucleus by fatty acid binding proteins (FABPs). Recent 

findings have shown that Δ9-THC and CBD can be transported to the interior of the cell by 

these proteins and therefore, they could be delivered for PPAR activation [106]. Finally, an 

indirect PPAR activation has been proposed that is triggered by the signaling cascades 

elicited by CB1 and/or CB2 receptors and a direct activation has also been proposed [107]. 

These four potential mechanisms has been summarized in Figure 6. The effects of 

phytocannabinoids at these receptors may be result of a combination of these pathways 

depending on the cell type, expression of receptors and experimental readout. Whether this 

activation is different depending on the PPAR isotype or why phytocannabinoids activate 

them differentially is a question to be further explored.

PPARα activation by phytocannabinoids: The alpha PPAR isoform is mainly expressed in 

liver, kidney, heart, muscle, and adipose tissue. Thus, PPARα activation by cannabinoids is 

involved in some of their central effects including memory, reward processing, food intake 

and lipid metabolism. There is little published data on the activity of phytocannabinoids at 

these nuclear receptor isoforms. In 2007, Sun and coworkers [108], reported that Δ9-THC 

lacks PPARα binding, whereas a recent study demonstrates that this phytocannabinoid is 

able to increase PPARα transcriptional activity in triple-negative breast cancer cells [109].

PPARγ activation by phytocannabinoids: The gamma isoform of these nuclear receptors 

is predominantly expressed in heart, muscle, colon, kidney, pancreas, and spleen. These 

transcription factors are implicated in the regulation of fatty acid storage, glucose 

metabolism, cell growth and cell differentiation. Activation of PPARγ plays a role in the 

apoptotic effects of cannabinoids [25, 102].

The phytocannabinoids Δ9-THC and CBD have extensively been shown to bind PPARγ 
enhancing their transcriptional activity. In addition, their effects have been selectively 

inhibited by PPARγ antagonists in different experimental in vitro and in vivo models [25, 

110–112]. Other phytocannabinoids such as CBG and CBC are also PPARγ agonists [111], 

whereas THCV was not able to increase the transcriptional activity of PPARγ [24]. It is 

interesting to note that in spite of their ability to activate these nuclear receptors, 

phytocannabinoids do not modulate PPARs to the same extent as other reported PPAR 

ligands, and therefore are considered weak agonists. Table 3 provides a summary of the 

PPAR isotypes that are activated by individual phytocannabinoids.

Synthetic cannabinoids such as abnormal CBD, cannabigerol quinone and ajulemic acid 

(AJA), also modulate PPARγ increasing transcriptional activity [104, 111]. Figure 7 

illustrates the 2.8 Å structure of PPARγ with ajulemic acid bound (PDB 2OM9).

Despite all of this data, PPAR-activation was not reproduced in certain experimental models 

where Δ9-THC and CBD failed to activate either PPARα or PPARγ on an intestinal 

permeability study [113, 114].

To the best of our knowledge, the PPAR activity of many of the phytocannabinoids 

discussed in this chapter has not been explored yet. In fact, to date there is little direct 
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evidence of the effects of phytocannabinoids at PPARα, and the potential involvement of the 

PPARβ/δ isotype on cannabinoid properties remains unknown.

3.2.2 Glycine Receptors (GlyR)—Over the last years, consistent evidence has shown 

that glycine receptors (GlyR) are relevant targets for CNS cannabinoid action [26, 55, 115, 

116]. Glycine receptors mediate synaptic inhibitory neurotransmission involved in crucial 

physiological and pathological processes [117]. These ionotropic receptors consist of five 

subunits, each of them composed of a four transmembrane helical segment, surrounding a 

central chloride-selective ion channel opened by the inhibitory neurotransmitter glycine 

[118] (Figure 8). Direct interaction of phytocannabinoids with GlyR has been proposed in 

the literature [26, 56, 119]. Using mutagenesis and NMR studies, Xiong and coworkers have 

demonstrated that certain phytocannabinoids can hydrogen bond with the polar residue S296 

in the third transmembrane domain of purified α1 and α3 GlyR subunits [26, 56, 120].

The anti-inflammatory and antinociceptive properties of phytocannabinoids are in part 

mediated by their ability to target glycine receptors. Different cannabinoids, including Δ9-

THC and CBD, can potentiate glycine currents in native neurons, hippocampus, amygdala or 

spinal cord [27, 55]. In vivo studies in a rodent model have also demonstrated that CBD and 

Δ9-THC analgesic effects are significantly decreased in mice lacking α3-GlyR, but not in 

mice lacking CB1 and CB2 receptors [26, 56]. Therefore, these receptors likely contribute to 

the therapeutic effects of phytocannabinoids in the treatment of inflammatory and 

neuropathic pain.

3.2.3 Transient receptor potential channels (TRP channels)—Transient receptor 

potential (TRP) channels are a group of membrane proteins involved in the transduction of a 

significant range of chemical and physical stimuli. These channels modulate ion entry 

mediating a variety of neural signalling processes. They are involved in numerous 

physiological functions such as temperature sensation, smell, taste, vision, pressure or pain 

perception among others [122, 123].

Phytocannabinoids have shown activity at TRP channels from three different subfamilies: 

TRPV (Vanilloid), TRPA (Ankyrin) and TRPM (Melastatin). These receptors are formed by 

six transmembrane helixes, a cation-permeable pore (between helix 5 and 6), and 

intracellular C- and N-termini. The general topology of TRP channels is depicted in Figure 

9. The most striking structural divergence among these three subfamilies is the number of 

ankyrin repeat domains present in the N-terminus of the receptor. Ankyrin type channels 

(TRPA) bear a high number of repeats, whereas the TRPM subfamily lacks ankyrin 

domains. The vanilloid subfamily present a variable number of ankyrin repeats, depending 

on the TRPV type.

To date, six types of TRP channels of the aforementioned three subfamilies have been 

reported to affect phytocannabinoid activity: TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and 

TRPA1 [29, 30, 124]. The increasing data regarding cannabinoid interactions with these 

receptors has prompted some research groups to consider certain TRP channels as the 

“ionotropic cannabinoid receptors” [125–127]. Therefore, these receptors represent 
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potentially attractive targets for the therapeutic use of phytocannabinoids in the treatment of 

sensory, inflammatory or dermatological pathologies [128].

TRPV1 channel activation by phytocannabinoids: TRPV1 was first cloned in 1997 as a 

receptor for the natural product capsaicin. Its structure has been determined in a recent study 

by a combination of electron cryomicroscopy and lipid nanodisc technology (Figure 10) 

[129]. This receptor is widely expressed in brain and sensory neurons (mainly in dorsal root 

and trigeminal ganglia), being involved in pain, nociception, and temperature sensing among 

other physiological and pathological conditions [130]. TRPV1 colocalizes with CB1 

receptors and CB2 receptors in sensory and brain neurons respectively [131, 132]. 

Endocannabinoids and synthetic derivatives have been considered putative endovanilloids 

based on their high potency towards TRPV1. In fact, anandamide and N-arachidonoyl 

dopamine have been proposed to interact at the same binding site as capsaicin (TMH3–4 

region) [133]. Although with less potency and efficacy, many phytocannabinoids, are able to 

activate TRPV1 [29, 125, 134]. As summarized in Table 1, CBD, CBN, CBG, CBC, Δ9-

THCV, and CBDV are agonists of this ion channel.

TRPV2, TRPV3 and TRPV4 channel activation by 
phytocannabinoids: Phytocannabinoids can also modulate other non capsaicin-sensitive 

TRPV channels such as TRPV2, TRPV3 and TRPV4. These receptors are directly involved 

in the modulation of nociception and temperature perception. As demonstrated through 

diverse functional outcomes, the phytocannabinoids Δ9-THC, CBD, CBG, Δ9-THCV, and 

CBDV are agonists of TRPV2 [29, 125]. In addition, strong data suggests that some of the 

analgesic and antiproliferative properties of CBD may be mediated by TRPV2 activation 

[28, 135].

The activity of phytocannabinoids has also been evaluated in TRPV3- and TRPV4-

expressing HEK-293 cells [30]. In this study, phytocannabinoids were not only able to 

modulate, but also alter the expression of these TRP channels. These results highlight the 

therapeutic potential of phytocannabinoids for the treatment of diseases such as 

gastrointestinal inflammation.

Other TRP channels affecting phytocannabinoid activity: TRPA1 and TRPM8: TRPA1 

and TRPM8 belong to the ankyrin and melastatin subfamilies of TRP channels respectively. 

These receptors are also involved in thermosensation, but they are activated by cold 

temperatures, as well as by different molecules such as menthol. TRPA1 and TRPM8 play a 

role in cold hypersensitivity associated with inflammatory and neuropathic pain [136]. 

Therefore, these ion channels may be a potential targets for the treatment of 

pathophysiological cold pain.

In HEK293 cells expresssing TRPA1, diverse plant-derived cannabinoids were able to 

efficaciously activate this ion channel. Among others, THC, CBC and CBG can induce 

TRPA1-mediated Ca2+ elevation in these cells [29, 31]. Although with lower potecy, the 

activation effect of CBC was also confirmed in DGR neurons. In addition, CBD and CBC 

were further observed to potently desensitize TRPA1 [31], thus supporting the hypothesis 

that phytocannabinoids may exert analgesic effects via TRPA1 activation/desensitization.
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De Petrocelli and coworkers have characterized phytocannabinoid effects on TRPM8 

channels (see Table 1). Studies on intracellular Ca2+ increase in HEK293 cells transfected 

with rat recombinant TRPM8, as well as in DRG neurons, have demonstrated that certain 

phyocannabinoids can efficaciously antagonize the effect of TRPM8 agonists [31, 125]. 

Interestingly, this activity was shown to be cannabinoid receptor-independent. Even though 

more studies, especially in vivo, need to be done to fully determine the role of TRP channels 

in the activity triggered by phytocannabinoids, there is definitely evidence that these 

molecules are highly involved in the modulation of these receptors.
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Fig. 1. 
Structures of most abundant phytocannabinoids in Cannabis sativa L.
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Fig. 2. 
Structures of phytocannabinoids in lower abundance.
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Fig. 3. 
(A) The typical Class A G-protein coupled receptor structure is illustrated here by the 2.8 Å 

structure of the mu opioid receptor (MOR; PDB entry 4DKL) (B) An extracellular view of 

the MOR structure is illustrated here. In MOR, the extracellular loops of the receptor are 

splayed open, making ligand access from the extracellular milieu possible. Here the covalent 

ligand, beta-funaltrexamine is bound.
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Fig. 4. 
The 2.8 Å structure of the S1P1 receptor is illustrated here (PDB 3V2Y with antagonist, 

ML056). In this receptor, the N-terminus covers the EC side of the receptor, permitting no 

ligand access from the EC milieu. Instead, there is a portal between THH1 and TMH7 that 

allows ligand access from the lipid bilayer.
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Fig. 5. 
This figure shows results from molecular dynamics simulations in which the CB endogenous 

ligand, 2-AG enters the CB2 receptor from the lipid bilayer via a TMH6–TMH7 portal.
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Fig. 6. 
Potential mechanisms of PPAR-phytocannabinoids interactions: A) Direct binding of 

phytocannabinoids to these nuclear receptors; B) Possible conversion of phytocannabinoids 

into metabolites that may activate PPARs; C) Phytocannabinoid transported to the nucleus 

by FABPs; D) Another possibility is that phytocannabinoids modulate CBR triggering 

intracellular signalling pathways that may lead to the activation of PPARs.
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Fig. 7. 
The 2.8 Å structure of PPARγ with ajulemic acid is illustrated here (PDB 2OM9).
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Fig. 8. 
Structure of glycine receptors: pentamers formed by α and β subunits in a ratio of 2α:3β 
[116], each subunit consists of four transmembrane segments, the second transmembrane 

helix of each subunit forms the lining of the ion pore of these ligand-gated ion channels.
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Fig. 9. 
General structure of the TRP channels modulated by phytocannabinoids: TRPV, TRPM and 

TRPA.
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Fig. 10. 
The 3.27 Å structure of the TRPV1 channel is illustrated here.
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Table 2

Physicochemical QlogP descriptor of phytocannabinoids Δ9-THC, Δ8-THC, CBN, CBD, CBG, CBC, Δ9-

THCV, CBV, CBDV, CBDN, CBE, CBL, and CBT calculated with QikProp 3.5 integrated in Maestro 

(Schrödinger, LLC, New York, USA).

pCB QPlogPa

Δ9-THC 5.627

Δ8-THC 5.630

CBN 5.576

CBD 5.414

CBG 5.790

CBC 5.954

Δ9-THCV 4.901

CBV 4.855

CBDV 4.648

CBDN 5.299

CBE 4.859

CBL 5.575

CBT 3.997

a
Predicted octanol/water partition coefficient [−2.0/6.5]; [range of 95% of drugs].
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Table 3

Activation of PPAR isotypes by phytocannabinoids.

pCBs PPARα PPARβ/δ PPARγ

Δ9-THC Transcriptional
activity [104]

- Binding assays [106]
Transcriptional activity [105]

Inhibition by PPARγ antagonists [19, 105]

CBD - - Binding assays [106]
Transcriptional activity [47]

Inhibition by PPARγ antagonists[47–49]

CBG - - Binding assays [106]

CBC - - Binding assays [106]

THCV - - NR [18]

NR: No response
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