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Abstract The endocannabinoid system (ECS) is a group of
neuromodulatory lipids, enzymes, and receptors involved in
numerous behavioral and physiological processes such as
mood, memory, and appetite. Recently, longitudinal and post-
mortem studies have shown that the ECSmight be involved in
neuropsychiatric disorders like schizophrenia. However, de-
spite the large amount of research, our knowledge of the ECS
and its implication in this debilitating disorder is still largely
limited. This review aims at providing a comprehensive over-
view of the current state of knowledge of the ECS in schizo-
phrenia and presenting some potential antipsychotic com-
pounds that modulate this system. Findings from animal and
human studies, and their implications for pharmacotherapy,
will be integrated and discussed in this paper. A closer look
will be given at the roles of the cannabinoid receptors type 1
(CB1) and type 2 (CB2), as well as the endogenous ligand N-
arachidonoylethanolamine (AEA) and 2-arachidonylglycerol
(2-AG), in the development of psychotic and schizophrenia-
like symptoms.
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Introduction

The term Bpsychosis^ is very broad and denotes a variety of
mental disorders. Schizophrenia is a particular kind of

psychosis and is associated with a myriad of signs including
positive symptoms such as delusion and hallucination, nega-
tive symptoms such as lack of motivation and social with-
drawal, and cognitive symptoms such as reduced attention
and altered speech [1, 2]. This disorder, which typically
emerges during late adolescence and early adulthood, affects
approximately 1 % of the population worldwide [3]. One of
the most enduring model of schizophrenia is the dopamine
hypothesis, which speculates that the psychotic symptoms of
this disorder are due to a hyperfunction of dopaminergic sig-
naling in the brain [4, 5]. Evidence supporting this hypothesis
comes from the observation that compounds that are effective
in treating schizophrenia were found to block dopamine D2
receptors [4, 6]. Nowadays, antipsychotics are classified into
two classes: the typical and atypical antipsychotics. In contrast
to typical antipsychotics, atypical antipsychotics bind loosely
to D2 receptors and exert part of their therapeutic effects by
binding to serotonin type 2A (5-HT2A) receptors [7]. Al-
though being considered the cornerstone in the management
of schizophrenia, antipsychotic drugs are associated with se-
rious limitations. Treatment with typical antipsychotics is of-
ten linked with extrapyramidal side effects such as tremors,
spasticity, and tardive dyskinesia [8, 9], whereas atypical an-
tipsychotics are associated with severe complications such as
sedation and weight gain [10, 11]. As a result, approximately
half of patients with schizophrenia are non-adherent to anti-
psychotic medication and are more likely to experience symp-
toms of psychosis upon drug discontinuation [12, 13].

Until recently, the predominant focus of research
concerning the biological basis of schizophrenia has been pri-
marily centered on the role of neurotransmitters including do-
pamine, serotonin, norepinephrine, glutamate, and glutamate
and γ-aminobutyric acid (GABA). However, given the limit-
ed efficiency of drugs that act on these neurotransmitters, re-
searchers are now investigating the role of other potential
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neurotransmitter substrates in the pathophysiology of schizo-
phrenia. One such substrate is the endocannabinoid system
(ECS). The ECS is composed of cannabinoid receptors, en-
dogenous cannabinoid ligands, and enzymes responsible for
the biosynthesis and degradation of endocannabinoids [14].
This newly discovered system of neuromodulation partici-
pates in several physiological and behavioral processes such
as pain [15], emotion [16], appetite [17], energy metabolism
[18], mood [19], and memory [20]. Recent preclinical studies
evaluating the levels of brain endocannabinoids in animal
models of schizophrenia have suggested that the ECS could
play a role in the pathophysiology of this disorder [21, 22].
Genetic and postmortem studies investigating the neurochem-
ical changes in the brain of patients with schizophrenia pro-
vided additional evidence for the role of the ECS in psychotic
and schizophrenia-like symptoms [1, 23]. However, despite
the large amount of work devoted to this field of research, still
more effort is needed to fully elucidate the role of the ECS in
schizophrenia. More particularly, the mechanisms by which
the ECS is associated with psychotic and schizophrenia-like
symptoms remain to be determined in appropriate animal
models.

The overarching goal of this review is to provide a better
understanding of the contribution of the ECS in the patho-
physiology of schizophrenia. This paper starts by describing
some of the most recent studies investigating the link between
cannabis use and psychosis and then provides an overview of
evidences indicating a dysfunction of the ECS in schizophre-
nia. Finally, a closer look will be given at pharmacological
tools that aimed at targeting the ECS for therapeutic purposes.

Cannabis Use and Psychosis: Towards
a BCannabinoid Hypothesis^ of Schizophrenia

Cannabis is considered one of the most frequently used illicit
drugs, and most consumers first experiment it during adoles-
cence [24, 25]. Psychotic disorders such as schizophrenia are
strongly associated with the regular consumption of cannabis,
especially when consumed during adolescence and young
adulthood [26]. Among consumers of cannabis, only individ-
uals who are genetically vulnerable to its psychotomimetic
effect will develop the symptoms of psychosis [27]. Adoles-
cents are generally more affected by the long-term effects of
cannabis because their brain is still in a phase of development
and is therefore more vulnerable to environmental insults [24,
28].

Among all the chemical constituents of cannabis, delta-
9-tetrahydrocanabinol (THC) is by far the most studied
and is responsible for the majority of the psychotropic
effects of cannabis. THC exerts its action in the brain by
binding to cannabinoid receptors type 1 (CB1) and type 2
(CB2) [29, 30]. Continuous exposure to THC has been

shown to upregulate the ECS, leading to long-lasting neu-
robiological changes in various regions of the brain [31].
By acting on cannabinoid receptors, THC also influences
the release of neurotransmitters involved in the patho-
physiology of schizophrenia, including dopamine and glu-
tamate [32]. As a result, heavy consumption of cannabis
most often has harmful effects on an individual’s health
and can lead to the development of psychosis and
schizophrenic-like symptoms [24, 33].

In the past decades, longitudinal studies investigating can-
nabis use in psychosis have prompted debates as to whether
the ECS might be involved in the pathogenesis of schizophre-
nia. Even though the first observation between cannabis and
schizophrenia was made almost 60 years ago [34], it was not
until 1987 that the first longitudinal study provided empirical
evidence of the increased risk of schizophrenia among canna-
bis users [35]. Since then, several other reports, which are
summarized in Table 1, have shown similar risk and preva-
lence data. The results from these studies, along with other
evidences from neuroimaging and postmortem analysis [46,
47], have led to the formulation of the Bcannabinoid hypoth-
esis,^ which speculates that hyperactivity of the ECS may be
associated with increased risk of developing symptoms of
schizophrenia, mainly by increasing dopamine neurotransmis-
sion in the brain. In accordance with this hypothesis, several
reports have observed high levels of cannabinoid receptors
and endocannabinoid ligands in animal models of schizophre-
nia and psychotic patients. However, despite the large amount
of research, the exact role of the ECS in schizophrenia has
eluded the scientific community and remains to be
characterized.

The Endocannabinoid System: Discovery
and Characterization

Since the discovery and isolation of THC 50 years ago
[48], researchers were interested in understanding how
this compound and other known cannabinoids work in
the brain. However, progress in this field of research
was hindered by the lack of identified receptors for these
molecules. It is only in 1988 that the pharmacological
characterization of a cannabinoid receptor was reported
in the central nervous system [49], and in 1990, the CB1

receptor was successfully cloned [50]. The CB1 receptor
is the most prevalent cannabinoid receptor in the brain
and is primarily located in the cerebellum, hippocampus,
and prefrontal cortex [51]. This receptor plays key roles in
modulating the level of excitatory and inhibitory neuro-
transmitters, including acetylcholine, noradrenaline, and
dopamine [51, 52]. CB1 receptors also act as inhibitory
neuromodulators for the release of GABA, especially in
the prefrontal cortex, where glutamate and GABA
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neurotransmissions are crucial for cognitive functions
[53–55]. Another cannabinoid receptor, which shares ami-
no acid sequence similarities with CB1, was discovered
later and designated as the CB2 receptor [56]. Although
CB2 receptors are primarily found in endothelial and im-
mune cells, they are also present in different brain regions
such as the hippocampus, striatum, amygdala, and cere-
bellum [51, 57, 58].

The discovery and subsequent characterization of canna-
binoid receptors immediately raised the possibility of endog-
enous molecules that could bind and act on these receptors.
The search for potential endogenous ligands led to the iso-
lation and discovery of N-arachidonoylethanolamine (AEA)
in 1992, an arachidonic acid derivative also termed ananda-
mide [59]. AEA is an endogenous cannabinoid neurotrans-
mitter and is considered a full agonist of CB1 receptor and a
partial agonist of CB2 receptor [51, 60]. It is implicated in a
variety of functions in the central nervous system, including

sleep regulation, memory, and reward [61–63]. 2-
Arachidonylglycerol (2-AG) is the second endogenous li-
gand of the ECS to be discovered [64] and, unlike AEA,
is a full agonist of both CB1 and CB2 receptors [51, 65]. It is
also found in relatively higher concentration than AEA in
various brain regions including the anterior cingulate cortex
(ACC), the hippocampus, and the prefrontal cortex (PFC)
[66]. Although several other natural and synthetic
endocannabinoid ligands have been discovered and devel-
oped, AEA and 2-AG remain the most widely studied [60,
67].

AEA and 2-AG act as retrograde messengers at specific
synapses; they are synthesized and secreted from postsynaptic
cells, and they bind to receptors located on pre-synaptic neu-
rons (Fig. 1). These endogenous ligands are found in different
brain regions, particularly in the brainstem, medulla, limbic
forebrain, striatum, and hippocampus [69]. After being syn-
thesized and released from postsynaptic cells, AEA and 2-AG

Table 1 Representation of 12
longitudinal studies showing the
relationship between cannabis use
and psychosis and/or
schizophrenia

Country Individuals Follow-up
period

Odds ratio Outcome Study

Sweden 50,465 adult
conscripts

15 years 2.4 (cannabis use by
age 18 years)

Schizophrenia [35]

USA 4994 adults 5 years 1.30 (daily users
of cannabis)

Psychotic symptoms [36]

Netherland 4104 adults 3 years 2.76 (weekly users
of cannabis)

Psychotic symptoms [37]

New
Zealand

Birth cohort of 759
individuals

26 years 4.5 (by age 15 years),
1.65 (by age 18 years)
(cannabis use ≥3
times by age 15 years)

Schizophrenia or
schizophreniform
disorder

[28]

Sweden 50,087 individuals
aged 18–20
years

27 years 1.9 (cannabis use more
than once), 6.7
(cannabis use >50
times)

Schizophrenia [38]

New
Zealand

Birth cohort of 1265
individual

18–21 years 3.7 at age 18 years and
2.3 at age 21 years
(individuals meeting
criteria for cannabis
dependence)

Psychotic symptoms [39]

Israel 50,413 male
16–17 years

5–11 years 2.02 (individuals meeting
criteria for cannabis
dependence)

Schizophrenia [40]

Greece Birth cohort of 3500
individuals

19 years 4.3 (cannabis use by
age 19 years)

Negative and
positive psychotic
symptoms

[41]

Germany 2437 individuals aged
14–24 years

4 years 1.69 (cannabis use ≥5
times)

Psychotic symptoms [42]

2.23 (daily cannabis use)

Netherland 1580 individuals aged
4–6 years

14 years 2.81 (cannabis use
>5 times)

Psychotic symptoms [43]

UK 8580 adults aged
16–74 years

18 months 1.47 (individuals meeting
criteria for cannabis
dependence)

Psychotic symptoms [44]

Finland Birth cohort of 6440
individuals

15–16 years 2.23 (lifetime cannabis
use)

Psychotic symptoms [45]

The odds ratio is defined as the risk of developing symptoms of psychosis and/or schizophrenia for cannabis
consumers relative to non-consumers. Data from this table show that adolescents are in general more vulnerable
than adults to the harmful effect of cannabis consumption
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are taken up by specific transport proteins, and once inside
pre-synaptic cells, they get rapidly inactivated by enzymatic
hydrolysis. AEA is mainly degraded by the fatty acid amid
hydrolase (FAAH) and the N-acylethanolamine acid amide
hydrolase (NAAA) (Fig. 1). FAAH, which was discovered
as the first enzyme responsible for AEA hydrolysis, is an
integral protein widely distributed throughout the brain [70].
FAAH and NAAA terminate AEA signaling by converting
the ligand into ethanolamine and arachidonic acid [71, 72].
On the other hand, 2-AG is mainly degraded by the enzyme
monoacylglycerol lipase (MAGL) and, during the process,
gets converted into glycerol and arachidonic acid (AA)
[68, 73]. Although 2-AG degradation is mainly mediated by
the enzymatic activity of MAGL, it is also influenced by
the activity of other serine proteases, including ABHD6 and
ABHD12 [74].

Cannabinoid Receptors in Schizophrenia

Insights from Pre-clinical and Clinical Studies

Evidence demonstrating the involvement of cannabinoid re-
ceptors in schizophrenia first originated from studies using
animal models [21, 22]. Results from these studies have con-
sistently demonstrated a reduction of CB1 receptor levels in
various brain regions in schizophrenia [22, 75] and were in
contrast with what was observed in schizophrenic patients.
This may be due to cytoarchitectural differences in cortical
regions between animals and humans and by the fact that
animal models for schizophrenia are only efficient in mimick-
ing some but not all aspects of the disease [75].

In phencyclidine (PCP)-treated rats, an animal model
for the positive and negative symptoms of schizophrenia,

Fig. 1 Themajor players of the ECS. The ECS comprises of cannabinoid
receptors, endogenous ligands, and hydrolytic enzymes. AEA and 2-AG
are endogenous bioactive lipids that bind to and activate the cannabinoid
receptors CB1 and CB2 located on presynaptic terminals. FAAH and
MAGL are the main hydrolytic enzymes responsible for the
degradation of AEA and 2-AG, respectively. NAE N -
acylethanolamines, PEA N-palmitoylethanolamine, OEA N-

oleoylethanolamine, NAPE-PLD N-acylphosphatidylethanolamine
selective phospholipase D, Lyso-PL lysophospholipase, DAGL
diacylglycerol lipase, GPR119 G protein-coupled receptor 119, GPR55
G protein-coupled receptor 55, TRPV1 transient receptor potential
vanilloide 1, PPARs peroxisome proliferator-activated receptors, NAAA
cysteine amidase, ABHD6monoacylglycerol lipase, FA fatty acids. Taken
with permission from [68]
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levels of CB1 receptors were found to be decreased in
the PFC, hippocampus, substantia nigra, and cerebellum
(Fig. 2a) [22]. Moreover, downregulation of CB1 recep-
tors in the brain has been shown to correlate with im-
pairment in fear memory specificity and GABA-mediated
transmission, which are known to be implicated in
schizophrenia [76, 77]. Similar to CB1 receptors, accu-
mulating evidence points to the involvement of CB2 re-
ceptors in the behavioral and functional deficits observed
in schizophrenia. Decreased peripheral level of CB2 re-
ceptor was found in non-treated patients with first-
episode psychosis [78] and in acute schizophrenia pa-
tients treated with antipsychotics [79]. Moreover, admin-
istration of a CB2 receptor antagonist in mice resulted in
schizophrenia-like phenotypes, including increased loco-
motor activity and deficits in pre-pulse inhibition (PPI),
which is defined by the ability to filter out non-relevant
sensory stimuli [23].

Taken together, the aforementioned studies indicate
that altered cannabinoid functioning leads to increased
susceptibility to schizophrenia. Such alterations appear
to mediate their psychotomimetic effect by interacting
with factors that are already observed in schizophrenia,
including changes in glutamate and GABA neurotrans-
mission. However, due to discrepancies in the results from
several studies, still more work is needed to fully eluci-
date the role of cannabinoid receptors in schizophrenia.
More specifically, future research needs to explore wheth-
er alterations in cannabinoid receptors are directly related
to the pathology of schizophrenia or if they arise in re-
sponse to an imbalance of neurotransmitters in the brain
such as glutamate and GABA.

Insights from Genetic Studies

Most of the genetic evidences supporting the cannabinoid
hypothesis of schizophrenia come from studies investigating
the role of cannabinoid receptor genes. However, the majority
of these studies have reported controversial findings, and still
more work is needed prior to drawing any reliable
conclusions.

CB1 receptors are encoded by the CNR1 gene, which is
located in a schizophrenia susceptibility locus designated
by Schizophrenia 5 (SCZ5, OMIM 603175) [80]. CNR1
variants have been linked with schizophrenia and a vari-
ety of other mental disorders. More particularly, polymor-
phism of the (AAT)n trinucleotide repeat (AL136096),
located in the promotor region of CNR1, was shown to
be associated with schizophrenia or subtypes of this dis-
order [80–82]. In contrast with these findings, other stud-
ies failed to report an association between the AAT repeat
polymorphism of CNR1 and schizophrenia, probably due
to limited size sample and the lack of subtype classifica-
tion [83, 84]. Three other polymorphisms of CNR1
(rs12720071-G-allele carriers, rs7766029-C homozygotes,
and rs9450898-C homozygotes) were identified in pa-
tients with schizophrenia and were shown to influence
the phenotypic features of the disease in patients that were
consuming cannabis [85]. Schizophrenic patients with
cannabis dependence were shown to have greater white
matter volume deficits and cognitive impairment than pa-
tients without heavy cannabis use, confirming the multi-
factorial nature of the disease, namely that gene-
environment interactions play an important role in the
development of schizophrenia-like phenotype [85].

Fig. 2 Alteration of CB1 receptor and endocannabinoid levels in PCP-
treated rats. a CB1 receptor level using [3H] CP 55 940 binding density
expressed in % net stimulation in various regions of the brain in vehicle
and PCP-treated rats. b AEA and 2-AG levels in the PFC of vehicle and

PCP-treated rats. Each group was compared with the vehicle using
Student’s t test (*p< 0.05, **p < 0.01, ***p< 0.001). Data are expressed
as the mean ± S.E.M. GP globus pallidus, Hip hippocampus, SN
substantia nigra, Cer cerebellum. Taken with permission from [22]
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Similarly, findings from genetic studies also suggest a link
between altered CB2 receptor function and increased sus-
ceptibility to schizophrenia-like symptoms. Polymor-
phisms of CNR2, the gene encoding CB2 receptors, are
frequently observed in schizophrenia patients [23], and
deletion of this gene induces schizophrenia-related behav-
iors in mice [86].

Taken together, these observations support the notion that
cannabinoid receptors participate in the development of
schizophrenia. However, to date, very few studies have eval-
uated the role of CNR1 and CNR2 in the development of
psychosis and schizophrenia-like symptoms. Future research
should focus on studying other polymorphisms in cannabi-
noid receptor gene that may be relevant for schizophrenia
and that could help strengthen our understanding of the genet-
ic etiology of this disorder.

Insights from Postmortem and Neuroimaging Studies

The potential involvement of cannabinoid receptors in the
pathophysiology of schizophrenia has also been supported
by postmortem and neuroimaging studies. Although not much
is known about CB2 receptor brain levels in patients with
schizophrenia, recent evidences have revealed increased
radioligand binding for CB1 receptors in the dorsolateral pre-
frontal cortex (DLPC) (Fig. 3a) [52, 87, 88], the posterior
anterior cortex [89], and the ACC [90] of patients with schizo-
phrenia. The changes observed in CB1 receptor binding,
which were independent of previous cannabis use and expo-
sure to antipsychotic drugs, further support a role of these
receptors in schizophrenia, particularly in working memory
processes, which depends on the circuitry of the DLPC as well
as in motivation, attention, and emotional responses, which
are modulated by the ACC. Similarly, studies using

neuroimaging techniques such as positron emission tomogra-
phy (PET) have reported elevated CB1 receptor binding in the
nucleus accumbens [91] and in the pons [92] of patients with
schizophrenia.

In summary, postmortem and neuroimaging studies clearly
show that patients with schizophrenia have elevated levels of
CB1 receptors in various parts of the brain. However, the
results of these studies appear at odds with findings showing
unaltered CB1 receptor mRNA expression in the DLPC of
schizophrenic patients [52, 93, 94]. The discrepancies ob-
served at the protein and mRNA levels might be explained
by the different methodological approaches used for the quan-
tification of CB1 receptors (immunohistochemistry versus au-
toradiography). In addition, increased radioligand binding for
CB1 receptors could reflect differences other than the amount
of receptor present, such as changes in the affinity of the
ligand to its binding site [93]. Finally, the increase in CB1

receptor binding sites without a similar change in mRNA
(Fig. 3b) could be due to differences in posttranslational pro-
cesses between schizophrenic and healthy individuals [52].

Endogenous Cannabinoid Ligands in Schizophrenia

AEA Level in Schizophrenia

There are plenty of evidences pointing to the involvement of
AEA in psychotic-like symptoms. Recent reports indicate that
AEA levels are higher in the plasma [95] and whole blood
[79] of schizophrenic patients compared to healthy individ-
uals, suggesting that this endocannabinoid may play a benefi-
cial role in psychosis homeostasis. Consistent with these re-
sults, AEA is found in relatively high concentration in the
CSF of individuals with schizophrenia [96, 97] and acute

Fig. 3 CB1 receptor levels were measured in the DLPC of control
individuals and in patients with non-paranoid (NP) and paranoid (P)
schizophrenia (SCZ). a [3H] CP 55 940 binding density expressed
in fmoles/mg of tissue equivalent (TE). bCB1mRNA expression normalized
to the geometric mean of four housekeeping genes. Statistical comparison
between each group was carried out using a one-way analysis of variance

(ANOVA) and covariance (ANCORA) followed by post hoc Bonferroni
tests to account for multiple comparisons. The increase in CB1 receptor
density in the P SCZ group was statistically significant when compared with
controls using ANOVA (#) and when compared with the NP SCZ group
using ANCOVA (*). Taken with permission from [52]

Mol Neurobiol



paranoid schizophrenia [98]. However, its level is reduced in
the PFC of PCP-treated rats [22] (Fig. 2b) and in the hippo-
campus and cerebellum of schizophrenic patients postmortem
[1]. Although these findings appear at odds with previous
reports showing increased AEA level in schizophrenia, taken
together, the aforementioned studies highlight a striking op-
posite phenomenon, namely that the concentration of AEA is
elevated in the plasma and CSF of schizophrenic patients, but
reduced in various regions of the brain. As such, elevated
levels of AEA in the CSF, but not in the brain, might play a
protective role during the early stages of schizophrenia and
could serve as an adaptive mechanism countering
hyperdopaminergia [98].

2-AG Level in Schizophrenia

There are clear evidences indicating that 2-AG is implicated in
psychotic disorders such as schizophrenia [14]. Studies using
PCP-induced animal models of schizophrenia found a signif-
icant increase in the level of 2-AG in the PFC [22, 99]. Such
increase is most likely the result of glutamatergic-related cog-
nitive deficits in schizophrenia [22]. 2-AG is known to reduce
glutamate release in the brain [100, 101], as such, a higher
level of 2-AG in certain brain regions could represent an adap-
tive mechanism aimed at counteracting glutamatergic hyper-
activity in schizophrenia. Interestingly, differences in 2-AG
level were only found in the PFC but not in the hippocampus
of PCP-treated animal [22], suggesting that cognitive process-
es and glutamate neurotransmission are most likely subserved
by the activity of the PFC. The notion that 2-AG is involved in
the cognitive deficits associated with negative schizophrenia
symptoms is also supported by a postmortem brain tissue
analysis indicating a significant increase in the level of 2-
AG in the PFC of schizophrenic subjects [1].

Although the aforementioned studies have reported altered
brain level of 2-AG in schizophrenia, other studies have failed
to demonstrate any changes in the plasma or CSF of schizo-
phrenic subjects [95, 96], probably due to altered peripheral
immune response in schizophrenia that do not reflect the
changes occurring in the central nervous system [1, 79]. Clear-
ly, more work is needed to better characterize the fluctuations
of 2-AG in schizophrenia, both in patients and animal models.

Implications for Pharmacotherapy

Cannabinoid Receptor Antagonists/Inverse Agonists

The search of effective antipsychotic agents for the treatment
of schizophrenia is hindered by the multifactorial nature of the
disease. Since THC and other cannabinoid receptor agonists
contribute to the development of psychotic states, molecules
that counteract their psychotomimetic effects have been

investigated for therapeutic applications [70, 102]. More par-
ticularly, a lot of interest is given to cannabinoid receptor
antagonists and inverse agonists because of their ability to
inhibit THC-induced hyperactivity of the ECS. Among them,
cannabidiol (CBD), a non-psychotropic component of canna-
bis, was recently suggested as a promising antipsychotic
agent. Findings from animal and human studies have shown
that CBD behaves as an inverse agonist of CB1 and CB2

receptors, and could be effectively used to block THC-
induced psychosis [29, 103]. CBD also exerts its antipsychotic
properties by inhibiting FAAH activity, leading to increased
AEA level in the brain [70]. Unlike most antipsychotic agents,
CBD is able to inhibit the hyperlocomotion induced by psy-
chotomimetic drugs in rodents without causing catalepsy or
motor impairment [104]. In addition, human studies investi-
gating the safety of chronic CBD administration for the treat-
ment of schizophrenia have reported few undesirable side ef-
fects and low toxicity compared to currently used antipsy-
chotics [70, 105].

Besides CBD, other cannabinoid receptor antagonists are
currently being investigated as potential therapeutic ap-
proaches. SR141716, clinically known as rimonabant, is the
first selective CB1 receptor inverse agonist to be developed.
Although it has been shown to effectively block the acute
effects of THC [106], studies investigating its use in schizo-
phrenia have reported mixed results. Poncelet et al. (1999)
showed that SR141716 at doses of 0.3–3 mg/kg was able to
efficiently suppress the increased locomotor activity induced
by psychostimulants in habituated gerbils [107], whereas in
another study, administration of SR141716 at doses of 0.1, 5,
and 10 mg/kg in rats had no effect on PPI and failed to reverse
d-amphetamine-mediated increases in hyperactivity [108].
Similarly, AVE1625 (Drinabant), a CB1 receptor antagonist,
was shown to be inefficient in attenuating the positive symp-
toms of schizophrenia in rodents [109]. Although AVE1625
was able to improve working memory in rats, it did not atten-
uate amphetamine-induced disruption of latent inhibition and
failed to reverse amphetamine-induced disrupted gating [109].
These data are in line with a previous report showing that
administration of AM251, another CB1 receptor antagonist,
fails to reverse the positive and negative symptoms of schizo-
phrenia in PCP-treated rats, suggesting that blockade of CB1

receptors with selective antagonists may have limited thera-
peutic potential [21].

Endocannabinoid Signaling

Regulating the tone of endocannabinoids in the brain could be
done by affecting their cellular uptake or by targeting the
enzymes responsible of their hydrolysis [14]. FAAH and
MAGL inhibitors are currently viewed as attractive targets
for the development of antipsychotic drugs because of their
ability to regulate brain levels of AEA and 2-AG, respectively
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[70, 72]. Studies in rodents have shown that JZL184, a recent-
ly developed and highly selective MAGL inhibitor, could pre-
vent impairments in induced long-term depression [110] and
prolong the depolarization-induced suppression of excitation
(DSE) in hippocampal slices [111], suggesting a possible role
in the regulation of cognitive functions such as memory. On
the other hand, enhancement of AEA level with URB597, a
selective FAAH inhibitor, was shown to be associated with
increased social interaction in PCP-treated rats [21, 112].

AEA reuptake inhibitors such as AM404 are also being
extensively studied as potential therapeutic approaches. Ad-
ministration of AM40 in spontaneously hypertensive rats
(SHR), an animal model of schizophrenia, resulted in reduced
locomotor activity [113] and increased social interaction
[114], supporting the role of AEA in the regulation of psycho-
motor activity. However, in opposition to these studies, ad-
ministration of AM404 at a concentration of 1, 5, or 10 mg/kg
failed to reverse the deficits in PPI in SHR [115] and was
associated with psychomimetic effects when administered in
mice with a dose of 5 mg/kg [116]. Although differences in
the behavioral paradigms and animal strains could account for
the variable effects of AM404 on PPI, it still remains to deter-
mine whether inhibition of FAAH could effectively dampen
the symptoms of schizophrenia.

Conclusion

Th e d i s c o v e r y o f c a nn ab i n o i d r e c e p t o r s a n d
endocannabinoids has given us a new understanding of the
behavioral and physiological roles of the ECS in the brain.
This prominent signaling systemmediates a variety of cellular
and homeostatic functions involved in neuronal development,
neurotransmission, and energy metabolism. Evidence from
animal and human studies show that CB1 and CB2 receptor
function, as well as AEA and 2-AG levels, are most likely to
be involved in the pathophysiology of schizophrenia. These
studies have opened exciting new perspectives for designing
antipsychotic therapies that could modulate the level of
cannabinoid receptors and/or endocannabinoids in the brain.
Given the increasing interest in the therapeutic applications of
the ECS, novel antipsychotics that target this system are likely
to emerge in the not too distant future. Among all potential
pharmacological agents targeting the ECS, CBD shows supe-
rior antipsychotic efficacy and holds therapeutic promise in
patients with schizophrenia. Nonetheless, the mechanisms un-
derlying its antipsychotic effects are still not clearly under-
stood and need to be better characterized. This field of re-
search would clearly benefit from the use of appropriate
neurodevelopmental models of schizophrenia that could help
better explore the role of the ECS in this disorder and promote
the development of more efficient antipsychotic medications.
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