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Abstract
The endocannabinoid system plays a regulatory role in a number of physiological processes and has been
found altered in different pathological conditions, including movement disorders. The interactions between
cannabinoids and dopamine in the basal ganglia are remarkably complex and involve both the modulation
of other neurotransmitters (c-aminobutyric acid, glutamate, opioids, peptides) and the activation of different
receptors subtypes (cannabinoid receptor type 1 and 2). In the last years, experimental studies contributed to
enrich this scenario reporting interactions between cannabinoids and other receptor systems (transient recep-
tor potential vanilloid type 1 cation channel, adenosine receptors, 5-hydroxytryptamine receptors). The im-
proved knowledge, adding new interpretation on the biochemical interaction between cannabinoids and
other signaling pathways, may contribute to develop new pharmacological strategies. A number of preclinical
studies in different experimental Parkinson’s disease (PD) models demonstrated that modulating the canna-
binoid system may be useful to treat some motor symptoms. Despite new cannabinoid-based medicines
have been proposed for motor and nonmotor symptoms of PD, so far, results from clinical studies are contro-
versial and inconclusive. Further clinical studies involving larger samples of patients, appropriate molecular
targets, and specific clinical outcome measures are needed to clarify the effectiveness of cannabinoid-
based therapies.
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Introduction
The endocannabinoid system (ECS) modulates a huge
range of physiological functions, including mood, cog-
nition, motor control, feeding behavior, and pain.1–5 In
recent years, a number of studies explored the role of
cannabinoids (CBs) in different pathological conditions.

Approximately 105 CBs have been extracted so far
from cannabis.6 These phytocannabinoids include D9-
tetrahydrocannabinol (THC) and cannabidiol (CBD).7

Several CB-based medicines are currently approved for
clinical indications, including pain, anorexia, spasticity,
chemotherapy-induced nausea, and severe refractory
epileptogenic encephalopathies of the childhood.5,8

The ECS is highly represented in the basal ganglia
and has been found altered in several movement dis-

orders, including Parkinson’s disease (PD).9–11 Pre-
clinical research suggests that modulating CB signaling
could improve motor symptoms.12,13 Among motor
symptoms, levodopa-induced dyskinesias (LIDs)
dramatically complicate long-term pharmacological
treatment in PD patients. LIDs are thought to arise
from pulsatile stimulation of dopamine (DA) recep-
tors with progressive sensitization of DA receptor-
associated striatal signaling.14,15 So far, despite an
increased knowledge of CBs–DA interactions at mo-
lecular level, the clinical relevance of CB-based thera-
pies on PD motor symptoms and LIDs has been
poorly detailed. The aim of this minireview is to pro-
vide an overview of the biochemical interactions
between CBs and DA. Furthermore, results from
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preclinical and clinical studies involving CB-based
therapies in PD will be discussed.

Endocannabinoid System and Dopamine
The ECS is constituted by endocannabinoids (eCBs), bio-
synthesizing (N-arachidonoyl-phosphatidylethanolamine
[NAPE]-specific phospholipase D and diacylglycerol
[DAG] lipase-a) and degrading (fatty acid amide hydro-
lysis [FAAH] and monoacylglycerol lipase [MAGL]) en-
zymes, and CB receptors (CBRs).

The best characterized eCBs (N-arachidonoyle-
thanolamine [AEA] or anandamide and 2-arachidono-
ylglycerol [2-AG]) interact with the two main CBRs
subtypes (CB1R and CB2R) and also with other recep-
tors, including the transient receptor potential vanilloid
type 1 (TRPV1) cation channel,16 the GTP-binding
protein-coupled receptor GPR55,17 the abnormal-CBD
receptor,18 and the peroxisome proliferator-activated re-
ceptor (PPAR).19

eCBs regulate synaptic transmission producing a phys-
iological feedback mechanism aimed to prevent an excess
of excitation or inhibition.20 This ‘‘retrograde signaling’’21

results in depolarization-induced suppression of inhibi-
tion (DSI) at c-aminobutyric acid (GABA)ergic synapses
and in depolarization-induced suppression of excitation
(DSE) at glutamatergic synapses.22–24 The presynaptic
location of CB1R, also allows eCBs to directly modulate
other neurotransmitters, including opioid peptides, ace-
tylcholine, and 5-hydroxytryptamine (5-HT).25,26

Although nigrostriatal dopaminergic neurons seem
not to express CB1R,27,28 they are significantly affected
by either the activation or the blockade of the ECS.29,30

These effects are likely mediated by CB1R located in
other neuronal subpopulations (i.e., GABAergic, gluta-
matergic, and opioidergic neurons) located near to and
connected with dopaminergic neurons.10,31,32 Indeed, it
should be reminded that dopaminergic neurons may,
in turn, produce eCBs from their somata and den-
drites,33,34 thus facilitating the retrograde signaling at
excitatory and inhibitory synapses.35

Additional direct mechanisms have been proposed to
explain the modulation of eCBs on DA transmission.
Some eCBs, including AEA, have been found to interact
with TRPV1 receptors,36 which are expressed in dopami-
nergic neurons.37 CB1R can form heteromers with other
metabotropic receptors, including the dopamine D1 and
D2 receptor.38 Finally, CB2R have been identified in
human nigrostriatal dopaminergic neurons,12 this may
support a direct role of eCBs in modulating dopaminergic
transmission.

CB–DA Interactions in the Basal Ganglia
Activation of the ECS has been associated with motor
inhibition and reduced dopaminergic activity. Classi-
cally, in hyperkinetic conditions reduced eCB tone ac-
company increased dopaminergic activity, whereas in
hypokinetic movement disorders, the opposite pattern
is observed.29 In experimental models of PD, eCBs can
enhance the hypokinetic effects of DA-depleting agents
and reduce the effects of drugs producing hyperstimu-
lation of DA receptors.27,29 In particular, it has been
proposed that motor inhibition produced by CB1R
stimulation is mediated by the regulation of the phos-
phorylation state of a critical mediator of DA action
in striatal neurons, DA- and cAMP-regulated phos-
phoprotein of 32 kDa39 (DARPP-32).

At cellular level, CB–DA interactions seem to be
much more complex. First, dopaminergic transmission
can influence the eCBs levels in the striatum as shown
by the increase of AEA levels after D2-like receptor
stimulation.40,41 This effect depends on both stimula-
tion of its synthesis and inhibition of its degradation,
as suggested by the ability of D2-like receptor agonists
to modulate the activity of NAPE-phospholipase D and
FAAH. Such DA-stimulated eCB activity can counter
the action of D2 receptor activation in the striatum,
suggesting an inhibitory feedback mechanism aimed
at limiting the hyperkinetic effect of DA. To add
more complexity, a cooperative action of CB1 and D2
receptors has also been proposed by the findings that
AEA produced by DA stimulation can enhance the ef-
fects of D2 receptor activation.42–44 Indeed, inhibition
of GABA transmission via D2-like receptors can be
partly prevented by CBR blockade suggesting that
eCBs may act as downstream effectors of D2 recep-
tors.45 Accordingly, both D2 and CB1 receptors are
expressed on GABA terminals of the striatum.46–48

The complex interaction between DA and eCBs
(Fig. 1) well explains the reorganization of these systems
in both idiopathic and experimental PD. Previous studies
in experimental PD showed enhanced eCB activity in the
basal ganglia, including increased CB1 mRNA levels,
CB1 activity, AEA levels, and decreased CB clear-
ance.9,10,27,49–52 Accordingly, increased level of AEA has
been shown in the cerebrospinal fluid of untreated PD pa-
tients.11 Also, increased expression of CB1 receptors in
the basal ganglia has been reported.51 These changes are
associated with movement suppression and may be re-
versed by chronic levodopa treatment.9,51,53

Whereas some of these alterations may reflect en-
dogenous compensatory mechanisms aimed at limiting
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the effects of DA loss in the basal ganglia, others prob-
ably contribute in generating the typical parkinsonian
motor symptoms.52

Basal Ganglia Plasticity in LID
DA plays a pivotal role in producing two opposite
forms of corticostriatal synaptic plasticity: long-term
depression (LTD) and long-term potentiation (LTP).
LTD makes glutamatergic synapses less excitable to fu-
ture stimulation, LTP strengthens the connections be-

tween cortical and striatal neurons (Fig. 2a). The
reversal of LTP is termed depotentiation (LTP-D)
and operates to reset synaptic transmission to the
naive state.54,55 Although both depotentiation and
LTD reduce the strength of synaptic transmission,
depotentiation is unable per se to depress nonpotenti-
ated synapses15 and requires N-methyl-D-aspartate
(NMDA) receptors activation.15,56 In experimental
PD, LIDs are associated with aberrant corticostriatal
plasticity (Fig. 2b), in particular, corticostriatal LTP is

FIG. 1. Schematic mechanisms explaining the interactions between cannabinoid system and dopaminergic
transmission at basal ganglia level. In the red circle are depicted additional receptors involved in
cannabinoid signaling. A1, adenosine A1 receptor; A2A, adenosine A2A receptor; CB1R, cannabinoid receptor type 1;
CB2R, cannabinoid receptor type 1; CBs, cannabinoids; D1, dopamine receptor type 1; D2, dopamine receptor
type 2; DA, dopamine; DARPP-32, DA- and cAMP regulated phosphoprotein of 32 kDa; Glu, glutamate; GABAR, c-
aminobutyric acid receptor; GABA, c-aminobutyric acid; 5HT, 5-hydroxytryptamine receptor; NMDAR, N-methyl-D-
aspartate receptor; TRPV1, transient receptor vanilloid type 1 cation channel.
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favored over LTD15,56 and is also abnormally stable and
refractory to depotentiation.57

Depotentiation can follow different mechanism,
homosynaptic LTP-D requiring the activation of the
same pathways that triggered LTP58,59; conversely, het-
erosynaptic LTP-D involves inputs different from those
engaged in LTP. Previous studies have shown that het-
erosynaptic LTP-D entails CB1, GABA-A, and adeno-
sine A1 receptors, and ERK 1/2 and p38 MAPK
signaling and also showed that eCBs play a complex
role in both presynaptic and postsynaptic changes60

(Fig. 2c, d). It is worth noting that activation of adeno-
sine A1 receptors is also involved in other forms of
LTD and depotentiation.61–64

Preclinical Studies
Preclinical studies using different models of experi-
mental PD have investigated the effects of both agonists
and antagonists of the CBR, used alone or as coadju-
vants.13,29,52,65

CB1 agonists inhibit basal ganglia DA release and are
therefore expected to be ineffective in alleviating PD
motor symptoms. CB1 agonists exacerbated bradykine-
sia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-lesioned primates.66 However, different CB1
agonists have also been reported to improve motor im-
pairment, possibly through nondopaminergic mecha-
nisms, including interactions with adenosine A2A
and 5-HT receptors.67–72

FIG. 2. Synaptic plasticity in levodopa-induced dyskinesia and role of endocannabinoids in synaptic
depotentiation. (a) In normal conditions, HFS induces LTP of the amplitude of EPSPs. LFS delivered after LTP
induction reset synapses to naı̈ve state. (b) In levodopa-induced dyskinesia, HFS produced LTP as in control
condition, but LFS failed to induce LTP-D. (c) Perfusion of 20 lM 2AG (black bar), an endocannabinoid agonist,
reversed LTP induced by HFS. (d) The effects of 2AG on LTP were blocked by 5 lM AM251, an inhibitor of CB1
receptors. 2AG, 2-arachidonoylglycerol; EPSP, excitatory postsynaptic potential; HFS, high-frequency stimulation;
LFS, low-frequency stimulation; LTP, long-term potentiation; LTP-D, depotentiation.
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Studies of CB1 antagonists more consistently
showed improvement of motor symptoms.73–77 Block-
ade of CB1R with rimonabant or other antagonists re-
duced akinesia and motor impairment in experimental
models of PD,73,75,77,78 although a few other studies
showed conflicting results.9,66 Moreover, rimonabant
was more effective when used at low doses,75,77 and
in very advanced phases of the disease characterized
by extreme nigral damage.73 These effects appear to in-
volve nondopaminergic mechanisms, including en-
hanced striatal glutamate release.9,73,75

The ECS might be involved in LIDs, although the re-
sults are controversial. Although this system is modu-
lated in different experimental models of PD and in
response to chronic levodopa treatment,51,79 it is not
known whether these changes are compensatory or
causal.80 Preclinical studies showed that both CB1R ag-
onists and antagonists represent potentially useful anti-
dyskinetic agents.69,74,81

The antidyskinetic effects of CBR agonists81–84 are
mediated by a normalization of cAMP/PKA signaling
and are associated to an increased DARPP-32 phos-
phorylation.84 However, as higher doses of CB1 agonists
may impair motor function, it has been suggested that

the effects on LIDs may be related to a global motor in-
hibition.85 In one study, FAAH inhibitors failed to re-
produce the beneficial effects of CB agonists when
given alone. As FAAH inhibitors showed antidyskinetic
properties only when combined with a TRPV1 receptor
antagonist, it is conceivable that CB1 and TRPV1 recep-
tors operate in opposite directions to control LIDs.83 A
recent study added more complexity by suggesting that
certain CBs (e.g., AEA) may reduce LIDs by activating
PPAR-c.86 Beneficial effects were also reported for the
PPAR-a receptor endogenous lipid ligand oleoylethano-
lamide, although the antidyskinetic effect was attributed
to the blockade of TRPV1 receptors rather than the ac-
tivation of PPAR-a receptors.87

Clinical Studies
Observational studies suggest that CBs may improve
some motor and nonmotor symptoms associated to
PD (Table 1). In two published surveys of PD patients,
smoked cannabis was reported to produce some benefit
on motor and nonmotor symptoms, although these
studies present several limitations that could have
influenced the results.88,89 A small case series showed
no benefit for tremor following a single administration

Table 1. Clinical Studies Examining Whether Cannabinoids Improve Motor and Nonmotor Symptoms
in Parkinson’s Disease

Study design
Number

of patients Cannabinoids Results Authors

Patient survey 84 Smoked cannabis Forty-six percent of patients described some benefit; 31%
reported improvement of rest tremor, 45% of bradykinesia
and 14% of LID

Venderová
et al.88

Patient survey 9 Cannabis Seven patients (78%) reported improvement of mood and
sleep, two patients reported improved motor symptoms,
not specifically dyskinesias

Finseth
et al.89

Case series 5 Smoked cannabis, 1 g
cannabis (2–9% THC)

No benefit for tremor following single administration Frankel
et al.90

Open-label 22 Smoked cannabis,
0.5 g cannabis

Thirty minutes after smoking cannabis, patients reported
improvement in tremor, rigidity, bradykinesia, pain, and sleep

Lotan
et al.91

Four-week open-label 6 CBD up to 400 mg/day Improvements on the Brief Psychiatric Rating Scale and
Parkinson Psychosis Questionnaire

Zuardi
et al.92

Case series 4 CBD 75 or 300 mg/day Benefits for rapid eye movement sleep behavior disorder Chagas
et al.93

Randomized, double-blind,
placebo-controlled
crossover

5 Nabilone Significant reduction of the Rush Dyskinesia Disability Scale
and total LID time; two patients reported improvement
in painful off-dystonia

Sieradzan
et al.94

Four-week randomized,
double-blind, placebo-
controlled crossover

17 Cannador (1.25 mg CBD
and 2.5 mg THC)

No improvement of LIDs on multiple outcomes. Carroll
et al.95No significant changes for motor symptoms (UPDRS-III),

quality of life (PDQ-39) or sleep
Randomized, double-blind,

placebo-controlled
8 Rimonabant No effect on motor symptoms or LID (UPDRS and

standardized videotape)
Mesnage

et al.96

Randomized, double-blind,
placebo-controlled

21 CBD 75 or 300 mg/day No changes for total UPDRS or any subscales. Chagas
et al.97Improvement for total PDQ-39 score and activities

of daily living subscores for the CBD 300 mg/day group

CBD, cannabidiol; LID, levodopa-induced dyskinesia; PDQ-39, Parkinson’s Disease Questionnaire-39; THC, tetrahydrocannabinol; UPDRS, Unified
Parkinson’s Disease Rating Scale.
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of smoked cannabis.90 In contrast, a small open-label
study assessing motor exam 30 min after smoking can-
nabis reported improvement in tremor, rigidity, bra-
dykinesia, pain, and sleep.91 Regarding nonmotor
symptoms, a small 4-week open-label study of CBD
for psychosis in PD found improvement on the Brief
Psychiatric Rating Scale and Parkinson Psychosis
Questionnaire,92 and another small case series
reported benefits for rapid eye movement sleep behav-
ior disorder.93

Few controlled clinical studies explored the effects of
CBs on motor and nonmotor symptoms in PD pa-
tients.94–97 A small randomized, double-blind, placebo-
controlled crossover trial (Class III) assessing the
efficacy on LIDs of nabilone (CB1 and CB2 agonist)
showed reduction of the Rush Dyskinesia Disability
Scale and of total LID time.94 A small 4-week random-
ized double-blind crossover study (Class I) explored
the effect of Cannador (oral cannabis extract: 1.25 mg
CBD and 2.5 mg THC) on LIDs.95 Cannador failed to
improve LIDs. Moreover, no significant changes were
observed for other secondary outcomes, including
motor symptoms (Unified Parkinson’s Disease Rating
Scale [UPDRS-III]), quality of life (Parkinson’s Disease
Questionnaire-39 [PDQ-39]), or sleep. However, it
should be again considered that some issues compro-
mised the results (i.e., 71% correct identification of
treatment). Most recently, 21 PD patients were ran-
domized to placebo, CBD 75 mg/day, or CBD
300 mg/day for a 6-week trial.97 Although no signifi-
cant changes were found for the total UPDRS, some
improvement was noted in the CBD 300 mg/day
group for the quality of life (total PDQ-39 score and ac-
tivities of daily living subscores).

For the purposes of this minireview, it should be
mentioned another small 16-day randomized placebo-
controlled trial assessing the efficacy of 20 mg daily oral
rimonabant (CB1 antagonist)s, which showed no
effect on parkinsonian motor symptoms or LIDs as
measured by the UPDRS and a standardized video-
tape procedure.96

Despite the low sample size and quality of these
studies, the data suggest that some motor symptoms
in PD, in particular LIDs, may respond to cannabis-
based therapies.98 Indeed, several factors (i.e., disease
stage and levodopa treatment, lack of standardized
methods) may explain the conflicting findings. While
no serious adverse events were reported, side effects in-
cluded hypotension, vertigo, visual hallucinations, diz-
ziness, and somnolence. Further studies are warranted

using different doses, formulations or target symptoms
(e.g., dystonia, psychosis, sleep).

Conclusions
Cannabis is a psychoactive compound widely used
along history for recreational and therapeutic purposes.
Although many open questions remain, cannabis-
based therapies have become increasingly common
raising considerable interest in politics as well as in
general public for legalization of medical cannabis.

In recent years, a growing body of literature
addressed the role of CBs in physiological and patho-
logical conditions. In movement disorders, preclinical
studies strongly contributed to increase knowledge on
the interaction between CBs, DA, and other signaling
pathways, adding novel insight on pathophysiology and
contributing to identify new pharmacological targets.

Results from available clinical studies are controver-
sial and inconclusive due to several limitations, includ-
ing small sample size, lack of standardized outcome
measures, and expectancy bias. Well-designed studies
involving larger sample of patients, appropriate molec-
ular targets, objective biological measures (i.e., CBs
blood level), and specific clinical outcome measures
are needed to clarify the effectiveness of CB-based ther-
apies. In addition, health concerns associated with med-
ical cannabis use have to be carefully addressed by
preclinical safety studies evaluating acute and long-
term effects on motor functions as well on mood and
cognition.

In this view, ongoing research and public policy should
help to clarify these issues reducing the incongruence be-
tween approved and actual use of medical cannabis.
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Abbreviations Used
AEA¼N-arachidonoylethanolamine

2-AG¼ 2-arachidonoylglycerol
CB¼ cannabinoid

CBD¼ cannabidiol

CBRs¼CB receptors
DA¼ dopamine

DARPP-32¼DA- and cAMP-regulated phosphoprotein of 32 kDa
DAG¼ diacylglycerol
DSE¼ depolarization-induced suppression of excitation
DSI¼ depolarization-induced suppression of inhibition

eCBs¼ endocannabinoids
ECS¼ endocannabinoid system

FAAH¼ fatty acid amide hydrolysis
GABA¼ c-aminobutyric acid

5-HT¼ 5-hydroxytryptamine
LIDs¼ levodopa-induced dyskinesias
LTD¼ long-term depression
LTP¼ long-term potentiation

LTP-D¼ depotentiation
MAGL¼monoacylglycerol lipase
MPTP¼ 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NAPE¼N-arachidonoyl-phosphatidylethanolamine

NMDA¼N-methyl-D-aspartate
PD¼ Parkinson’s disease

PPAR¼ peroxisome-proliferator-activated receptor
THC¼ tetrahydrocannabinol

TRPV1¼ transient receptor potential vanilloid type 1
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