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1 Introduction

Cannabis sativa contains about 120 phytocannabinoids, which are the C21

terpenophenolic constituents making up approximately 24% of the total natural

products of the plant [1]. To date, eleven different chemical classes of

phytocannabinoids have been identified (Table 1). The Δ9-tetrahydrocannabinol

(1) type class represents the largest proportion, comprising 17.3% of the total

phytocannabinoid content, closely followed by the cannabigerol (6) type (see [1]

for a detailed review of these different classes). The proportion of each chemical

class in the cannabis plant is, however, dependent on the growing conditions,

geographical location, plant processing methods, and plant variety or chemotype.

Thus, these factors influencing the relative proportions of each phytocannabinoid

type will additionally influence the pharmacological effects of whole cannabis

extracts, either through a polypharmacological effect of the phytocannabinoids

themselves, or through modulation of phytocannabinoid effects by the

non-cannabinoid content of the plant [2]. These variances are therefore important

to take into account when assessing the effects of whole cannabis plant extracts. In

this chapter, focus will be made on the seven individual phytocannabinoids that

have been the most thoroughly studied.

Table 1 Constituents of

Cannabis sativa
L. represented as a percentage

of the total phytocannabinoid

content. Adapted from [1]

Chemical class type

Percent of total

phytocannabinoid content (%)a

1 type 17.3

Δ8-THC type 1.9

3 type 9.6

4 type 7.7

7 type 7.7

6 type 16.3

CBND type 1.9

CBE type 4.8

CBL type 2.9

CBT type 8.7

Miscellaneous type 21.2
aTotal phytocannabinoid content¼ ca. 120
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Phytocannabinoids have been of recreational, therapeutic, and other interest for

thousands of years [3, 4]. Elucidation of the structure of the main phytocannabinoid

obtained from cannabis, 1 [5], was reported in 1971. This discovery paved the way

for further research that ultimately led to the discovery of the cannabinoid recep-

tors, CB1 [6], which predominates in the central nervous system, and the principally

peripheral cannabinoid receptor, CB2 [5]. The mammalian endocannabinoid system

was then discovered [6], including the endogenous cannabinoid receptor ligands

arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) [7–9]. The

psychotropic effect of 1, mediated by its partial agonist activity at CB1 receptors,

has limited the extent of its use medicinally and it was removed from the British
Pharmacopeia in 1971, and was declared of no medical benefit and placed under

control in the Misuse of Drugs Act 1971 of the United Kingdom [10]. Despite this,

patient-led self-medication campaigns claimed various therapeutic benefits, such as

control of pain and emesis [11–15], control of seizures [16–21], and anti-

inflammatory properties [17, 22], among others. This drove further investigation,

leading to some licensed medications containing 1 being now available, such as

Sativex®, which is used for the treatment of spasticity associated with multiple

sclerosis. Although 1 also exerts some effects through non-CB receptor targets, the

absence of psychotropic effects associated with the other phytocannabinoids pre-

sent in cannabis has driven research into their discrete pharmacology and molecular

targets that lie outside of the endocannabinoid system.

Over the years, a variety of molecular targets for plant cannabinoids outside the

endocannabinoid system have been identified, such as ion channels, non-CB1 or CB2

G-protein coupled receptors, enzymes, and transporters. In this chapter, an overview

of the molecular pharmacology of phytocannabinoids is presented, describing both

targets within the endocannabinoid system and a wide range of other molecular

targets. Since ca. 120 phytocannabinoids have now been identified and many have, as

yet, poorly defined or unknown pharmacological profiles, particular focus is paid to

phytocannabinoids that: (a) are reported to exert a behavioral effect in animal models

or clinical reports, and (b) exert effects via specific molecular targets at sub-

micromolar to low micromolar concentrations, which can realistically be achieved

in vivo due to the lipophilic nature of these compounds [23].

2 Δ9-trans-Tetrahydrocannabinol

O

OH

1

9
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2.1 Activity at Cannabinoid Receptors

In 1986, Howlett and colleagues developed a biochemical model system that

allowed the indirect identification of cannabimimetic drugs, i.e. those exhibiting

properties like 1 (cAMP assay) [24]. This system provided an indication of canna-

binoid receptor activation by monitoring the ability of a compound to inhibit

forskolin-induced stimulation of cyclic adenosine monophosphate (cAMP) produc-

tion. Along with the many synthetic CB1 receptor agonists now developed [6, 25,

26], 1 can inhibit the activity of adenylate cyclase that synthesizes cyclic AMP.

However, in this assay, 1 does not inhibit adenylate cyclase to the same extent as

several other synthetic CB1 receptor agonists, which led to its classification as a

partial agonist at this receptor [27].

Two years later, in 1988, Devane and co-workers developed a radioligand

displacement binding assay using the highly potent, synthetic CB1 receptor agonist,

CP-55940 [28]. In this assay, 1 effectively displaced radiolabeled CP-55940 and

showed low micromolar affinity at the CB1 receptor (Table 2). The properties of

1 as a CB1 receptor partial agonist were further exemplified in binding assays

assessing ligand-induced changes in GTPγS binding in cell membranes [27, 29,

30]. Here, the synthetic CB1 receptor agonist, JWH-018, increased GTPγS binding

in mouse brain membranes to a much greater extent than 1 [29].

Importantly, 1 not only activates CB1 receptors in vitro but also in vivo as well.

In vivo activity of 1 at CB1 receptors was tested in a battery of animal behavior

tasks known to produce outcomes associated with CB1 receptor activation

[31, 32]. The four simple behavioral tests in mice known as the “Billy Martin

Tetrad” were reported, and these are: inhibition of locomotor activity; reduced

sensitivity to pain; reduced body temperature; and immobility (catalepsy) [31]. At

doses of 0.03–20 mg kg�1 (i.v.), 1 was active in all of these tests, and the effects

were blocked by the CB1 receptor antagonist, rimonabant (10 mg kg�1) [31–

33]. However, it should be noted that rimonabant is not a specific ligand for the

CB1 receptor when employed at concentrations of>1 μM [34, 35] and, therefore, at

the concentrations reached in vivo.

With this dose, functional antagonism of these effects could also have been

mediated by other targets of rimonabant such as agonism or antagonism of GPR55

receptors [36], antagonism of A1 adenosine receptors [37], and antagonism of

TRPV1 channels [38].

In a feeding study in rats, 1 (0.5–4.0 mg kg�1) stimulated hyperphagia.

However, while rimonabant predictably inhibited hyperphagia at doses of

>0.67 mg kg�1, it also stimulated hyperphagia at lower doses. There was no significant

difference in food intake between these two groups and this may be due to the

differences in the feeding pattern being masked by effects on non-specific behavioral

effects such as reduced motor co-ordination induced by 1 treatment [39].

There is also in vitro and in vivo evidence that 1 binds to, and activates the CB2

receptor. The binding affinity of 1 at CB2 receptors is, however, lower than that at

CB1 receptors, as shown in Table 2 [29, 40]. Evidence of a partial agonist effect of

64 S.E. Turner et al.



Table 2 Examples of Ki values of Δ9-trans-tetrahydrocannibinol (1), Δ9-trans-tetra-
hydrocannabivarin (2), cannabinol (3), cannabidiol (4), cannabidivarin (5), cannabigerol (6), and

cannabichromene (7) and half maximal responses where described

Ki/μM
EC50/

IC50 Assay Cell type Ref.

Δ9-Tetrahydrocannabinol (1)

CB1 0.0061 ND [3H] CP55-940 binding assay Whole brain/Rat [28]

0.005 ND [3H] CP55-940 binding assay CHO cell membrane/

Human

[158]

0.008 ND [3H] CP55-940 binding assay CHO cell membrane/

Mouse

0.013 ND [3H] CP55-940 binding assay CHO cell membrane/

Rat

0.021 ND Filtration assay Brain membranes/Rat [86]

0.035 ND [3H] CP55-940 binding assay Brain synaptosomal

membrane/Rat

[35]

0.0395 0.013 [3H] HU-243 binding assay COS-7 cells/Rat [40]

0.0477 ND [3H] CP55-940 binding assay Whole brain/Mouse [90]

0.053 0.0165 [3H] CP55-940 binding assay Fibroblast L cells/Rat [87]

0.065 ND [3H] HU-243 binding assay Synaptosomal brain

membrane/Rat

[85]

0.08 ND [3H] HU-243 binding assay COS-7 cells/Rat

0.0356 0.087 [3H] CP55-940 binding assay Sf9 cells/Human [159]

CB2 0.003 ND [3H] CP55-940 binding assay CHO cell membrane/

Human

[158]

0.0017 ND [3H] CP55-940 binding assay CHO cell membrane/

Mouse

0.0068 ND [3H] CP55-940 binding assay CHO cell membrane/

Rat

0.036 ND Filtration assay Spleen membrane/Rat [86]

0.0039 ND [3H] CP55-940 binding assay Spleen membrane/Rat [35]

0.040 ND [3H] HU-243 binding assay CHO cell/Rat [40]

0.075 0.0418 [3H] CP55-940 binding assay CHO cell membrane/

Rat

[87]

0.032 ND [3H] HU-243 binding assay COS-7 cells/Rat [85]

0.0084 0.061 [3H] CP55-940 binding assay Sf9 cells/Human [159]

Δ9-Tetrahydrocannabivarin (2)

CB1 0.075 ND [3H] CP55-940 binding assay Whole brain mem-

branes/Mouse

[73]

0.047 ND [3H] CP55-940 binding assay Cortical brain mem-

branes/Rat

[72]

0.286 ND [3H] rimonabant binding assay Cortical brain mem-

branes/Rat

[160]

0.046 ND [3H] CPP-940 binding assay Whole brain/Mouse [90]

(continued)
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Table 2 (continued)

Ki/μM
EC50/

IC50 Assay Cell type Ref.

CB2 0.225 0.038 [3H] CP55-940 binding assay CHO cell membrane/

Human

[70]

0.145 0.143 [3H] CP55-940 binding assay CHO cell membrane/

Human

[41]

Cannabinol (3)

CB1 0.326 ND Filtration assay Brain/Rat [86]

0.129 ND [3H] CPP-940 binding assay Whole brain/Mouse [90]

1.13 >1 [3H] CPP-940 binding assay Fibroblast L cells/Rat [87]

0.392 ND [3H] HU-243 binding assay Synaptosomal brain

membrane/Rat

[85]

0.211 ND [3H] HU-243 binding assay COS-7 cells/Rat

3.2 ND [3H] CP55-940 binding assay Sectioned brain/Rat [25]

0.25 ND [3H] CP55-940 binding assay Whole brain/Rat [161]

0.74 ND [3H] rimonabant binding assay Whole brain/Rat

0.012 0.017 [3H] CP55-940 binding assay Sf9 cells/Human [159]

0.069 ND [3H] CP55-940 binding assay CHO cell/Human [88]

CB2 0.096 ND Filtration assay Spleen/Rat [86]

0.301 >1 [3H] CPP-940 binding assay CHO cell membrane/

Rat

[87]

0.126 ND [3H] HU-243 binding assay COS-7 cells/Rat [85]

0.016 0.055 [3H] CP55-940 binding assay Sf9 cells/Human [159]

0.07 0.062 [3H] CP55-940 binding assay CHO cell/Human [88]

Cannabidiol (4)

CB1 >10 ND [3H] CP55-940 binding assay Whole brain/Mouse [90]

0.073 ND [3H] 50-trimethylammonium-Δ9-

THC binding assay

Whole brain/Rat [162]

>0.5 ND [3H] CP55-940 binding assay Whole brain/Rat [28]

53 ND [3H] CPP-940 binding assay Sectioned brain/Rat [25]

4.3 ND [3H] CP55-940 binding assay Cortical brain mem-

branes/Rat

[163]

2.3 ND [3H] CP55-940 binding assay Whole brain/Rat [161]

1.3 ND [3H] rimonabant binding assay Whole brain/Rat

>10 ND [3H] HU-243 binding assay Whole brain/Rat [136]

4.9 ND [3H] HU-243 binding assay Whole brain/Mouse [104]

1.8 ND/

NE

[3H] rimonabant binding assay Brain cortical mem-

branes/Rat

[164]

4.7 ND [3H] CP55-940 binding assay Whole brain mem-

branes/Mouse

[118]

1.45 3.86 [3H] CP55-940 binding assay Sf9 cells/Human [159]

CB2 >10 ND [3H] HU-243 binding assay COS-7 cells/Rat [136]

2.86 ND [3H] CP55-940 binding assay CHO cell/Human [86]

4.2 0.503 [3H] CP55-940 binding assay CHO cell/Human [104]

(continued)
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1 at CB2 receptors came from a study where 1 antagonized the inhibition of

adenylate cyclase in CHO cells transfected with human CB2 receptors induced by

the agonists HU-293a and HU-210 (Table 2) [40].

As is typical of a partial agonist, 1 has a mixed agonist–antagonist effect. This is

likely dependent on the proportion of cannabinoid receptors that are in the “active”

state in tissues, coupled to their effector mechanisms, or in the “inactive” state,

uncoupled to their effector mechanisms [41]. Moreover, it would also depend on the

presence of other synthetic or endogenous cannabinoid receptor agonists, and

possibly species differences between studies. As a partial agonist, 1 can be expected

to antagonize the actions of full agonists. In a mouse model of hypothermia, 1 alone

acted as a partial agonist with less efficacy than the cannabinoid receptor full

agonist, AM2389, but when co-administered with this compound, 1 antagonized

AM2389’s hypothermic effects [42].

In an in vitro study using the GTPγS binding assay in rat brain membranes from

rats chronically treated with 10 mg kg�1 1 for 21 days, the stimulation of GTPγS
binding by WIN 55212–2 was reduced by up to 70%, suggesting that chronic

exposure to 1 led to a desensitization of cannabinoid-activated signal transduction.

In healthy human subjects, the intravenous administration of 1 caused acute

psychotic reactions and a temporary decline in cognitive functioning [43].

Table 2 (continued)

Ki/μM
EC50/

IC50 Assay Cell type Ref.

2.86 ND [3H] CP55-940 binding assay E. coli cell membranes/

Human

[118]

0.37 2.27 [3H] CP55-940 binding assay Sf9 cells/ Human [159]

Cannabichromene (7)

CB1 >10 ND [3H] CP55-940 binding assay Whole brain/Mouse [90]

0.71 1.68 [3H] CP55-940 binding assay Sf9 cells/Human [159]

CB2 0.256 1.30 [3H] CP55-940 binding assay Sf9 cells/Human [159]

Cannabigerol (6)

CB1 275 ND [3H] CP55-940 binding assay Sectioned brain/Rat [25]

0.896 1.12 [3H] CP55-940 binding assay Sf9 cells/Human [159]

CB2 0.153 0.85 [3H] CP55-940 binding assay Sf9 cells/Human [159]

Cannabidivarin (5)

CB1 14.7 13.80 [3H] CP55-940 binding assay Sf9 cells/Human [159]

0.127* ND [3H] CP55-940 binding assay MF1 brain membranes/

Mouse

[2]

CB2 0.57 3.45 [3H] CP55-940 binding assay Sf9 cells/Human [159]

ND, not described; CHO, Chinese hamster ovary; COS, CV1 in origin with SV40 genes; Sf,

Spodoptera frugiperda
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2.2 Cannabinoid Receptor Independent Activity

The well-known psychotropic effect of 1 is mediated by its partial agonist activity

at CB1 receptors. However, 1 also exerts effects at molecular targets outside of the

endocannabinoid system. Some of the physiological effects of 1 may be mediated

by more than one target, as detailed below.

In this regard, 1 has been proposed to act in an allosteric manner on specific

receptors outside of the endocannabinoid system. In vitro, 1 potently inhibited

5HT3A-induced currents in HEK293 cells transfected with 5HT3A receptor cDNA

[44], similar to the reported effect of the synthetic cannabinoid receptor agonist,

WIN 55212–2,and also in cultured rat trigeminal ganglion neurons (Table 3)

[44, 45]. Together with 1, other cannabinoids such as WIN 55212–2, anandamide,

JWH-015, and CP-55940, have been shown to stereoselectively inhibit currents at

this receptor [44].

Cannabinoid receptors and 5HT3 receptors are both involved in control of pain

and emesis [11–14]. The results above show that the activity of cannabinoid

receptor agonists on the control of pain and emesis may be shared by their

antagonistic effect on 5HT3 receptors [46–50]. This highlights the possibility of a

ligand having a physiological effect that can be mediated by multiple targets.

Therefore, an effect proven to be mediated through one target does not mean that

other targets of the ligand mediating the same physiological effect can be ruled out.

At glycine receptors, low concentrations of 1 also acted through a possible

allosteric mechanism by potentiating the amplitude of glycine-activated currents

in rat isolated ventral tegmental area neurons via a cannabinoid receptor-

independent mechanism (Table 3) [51]. Glycine receptor function was potentiated

by 1 at physiologicallyrelevant concentrations. Glycine receptors are involved in

pain transmission [52, 53] and dopamine release from ventral tegmental area

neurons [54, 55], thus 1 may be important for analgesia and drug addiction.

Analgesia is also produced through 1 activity at cannabinoid receptors [11, 12]

but some of this analgesic effect may be mediated through glycine receptors as

well. This again shows a physiological effect being mediated by more than one

target of the same ligand.

Compound 1 (0.1–10 μM) is a peroxisome proliferator-activated receptor

gamma (PPARγ) agonist. The studies below outline the relevance of the agonist

effect at this nuclear receptor in the cardiovascular system and potentially in cancer

treatment. Through agonism of the PPARγ receptor, 1 has time-dependent effects

on vasorelaxation of the aorta and superior mesenteric arteries in a dose-dependent

manner [56]. This relaxation effect of 1 was similar to the vascular relaxation effect

of the PPARγ ligand rosiglitazone (46.7% and 69.7% respectively). Another study

by the same group showed differences in the time-dependent effect of 1 on

vasorelaxation in different vessel types; in resistance mesenteric arteries no time-

dependent effect of 1 on PPARγ mediated vasorelaxation was noted [57]. These

studies show that the effect of 1 on endothelium-dependent vasorelaxation is

dependent on the predominant relaxing factor in a given artery. Agonism of
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Table 3 A comparison of select in vitro studies showing cannabinoid receptor independent

activity of Δ9-trans-tetrahydrocannabinol (1) according to concentrations, assay types, and cell

types used

Target

Concentration/

μM
EC50/

μM
IC50/

μM Assay Cell line Ref.

GPR55 <1 0.008 GTPγS binding assay HEK293/Human [67]

1–10 5 [Ca2+] mobilization

assay

HEK293/Human [165]

<1 0.64 ERK1/2 MAPK

phosphorylation

HEK293/Human [69]

1 ND ERK1/2 MAPK

phosphorylation

HEK293/Human

ND B-arrestin assay HEK293/ND [66]

GPR18 <1 0.96 MAPK activation

assay

HEK293/ Human [62]

5HT3A <1 0.038 Voltage clamp HEK293/Human [44]

Glycine ligand gated ion channels

α1 <1 0.086 Whole cell patch

clamp

Xenopus laevis
oocytes/

Human

[51]

α1β1 <1 0.073 Whole cell patch

clamp0.115 Ventral tegmen-

tal area neurons/

Rat

PPARγ
nuclear

receptor

<1 ND Contraction HEK293/ND [166]

TRP cation channels

TRPA1 <1 0.23 Ca2+ Fluorescence

assay

HEK293/Rat [80]

TRPV2 0.65 HEK293/Rat

TRPM8 0.16 HEK293/Rat

0.15 HEK293/Rat [79]

TRPV3 1–10 9.5 HEK293/Rat [81]

TRPV4 8.5 HEK293/Rat

CYP1A1 1–10 0.53 Fluorescence assay-

FLUOSTAR

OPTIMA

Recombinant/

Human

[167]

CYP1A2 4.59

CYP1B1 1.39

CYP2C9 1–10 2.84 HPLC Recombinant/

Human

[168]

Adenosine

uptake

<1 0.27 Scintillation counting

[3H]adenosine

EOC-20 microglia [116]

0.334 Scintillation counting

[3H]adenosine

RAW264.7

macrophages

GPR, G-protein-coupled receptor; 5HT, 5-hydroxytryptamine; PPAR, peroxisome proliferator-

activated receptor; TRP, transient receptor potential; CYP, cytochrome P450; HEK, human

embryonic kidney; GTPγS, guanosine 50-O-(3-thiotriphosphate); Ca2+, Calcium; ERK, extracel-

lular signal-regulated kinases; MAPK, mitogen-activated protein kinase; also see footnote for

Table 1
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PPARγ by 1 leads to an increase in superoxide dismutase activity, thus leading to an

increase in hydrogen peroxide (H2O2). In superior mesenteric arteries, H2O2 is the

predominant relaxing factor and therefore 1 enhances endothelium-dependent

vasorelaxation. In resistance mesenteric arteries, however, where endothelium-

derived hyperpolarizing factor (EDHF) is the predominant relaxing factor, 1 inhibits

EDHF production and therefore inhibits vasorelaxation in these arteries [57].

In vivo, 1 acts via the PPARγ mechanism to reduce tumor growth rate. In mice

with induced tumour xenografts, 1 (15 mg kg�1) showed antitumor properties by

reducing tumor growth rate, which was prevented by co-administration with the

PPARγ antagonist, GW9662 [58]. However, an antagonist-only treatment group

was not included in this study and therefore the effect of 1 on tumor growth has not

been validated as being mediated by PPARγ and so, as yet, can be considered a

functional, rather than molecular antagonism.

Moreover, PPARγ is not only involved in the physiological roles outlined above.
It is also involved in adipogenesis, where it is highly expressed, and in the treatment

of type 2 diabetes [59, 60] and gastro-inflammatory disorders [61]. Compound

1may therefore have as yet unproven effects on these disorders. There are other Gi/o

coupled receptors (GPCR) that are thought to be novel cannabinoid receptors.

These are GPR18 and GPR55 [29, 30, 62, 63]. These receptors belong to the

same class as CB1 and CB2 receptors but do not share many structural similarities

[64], which would likely result in differing ligands and physiological effects at

these receptors compared to CB1 and CB2 receptors.

In HEK293 cells transfected with the novel Gi/0 coupled GPCR cannabinoid

receptor, GPR18, 1 acts as a potent agonist (Table 3) [62]. Interestingly, the

phytocannabinoid cannabidiol (4) can antagonize the effect of the agonists such

as 1 at this receptor [62, 63].

There are conflicting reports on the activity of 1 at the GPR55 receptor in vitro.

This receptor has been claimed, by many authors, to be a third cannabinoid receptor

[29–31, 65]. Using two different assays in the same cell line (HEK293) transfected

with human GPR55, 1 weakly activated GPR55 in a β-arrestin assay [66], but

potently activated it in a GTPγS binding assay with a submicromolar half maximal

response (Table 3) [67]. However, using the same cell line transfected with human

GPR55 and the β-arrestin assay, Kapur and co-workers found no detectable activity
of 1 at this receptor [68]. Moreover, again in the same cell line also transfected with

human GPR55, 1 has been reported to exhibit differential effects in a concentration-

dependent fashion. It was reported in the same study that 1 is an inhibitor of the

proposed endogenous agonist of GPR55, lysophosphatidylinositol (LPI), at con-

centrations of 1 μM, by inducing a rightward shift in the log concentration-response
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curve of LPI as well as activating this receptor at micromolar concentrations

[69]. These findings of agonism and inhibition suggest that there could be two

distinct binding sites on GPR55 receptors. By itself, 1 may bind to either an

orthosteric binding site or an allosteric binding site producing agonism of the

receptor or, by binding to an allosteric site, produces a conformational change in

the orthosteric binding site, thus reducing the effect of LPI [69]. The binding of 1 to

a particular binding site may be dependent on the concentrations used.

Even though 1 has undesirable psychotropic effects, mediated by CB1 receptors,

it is important to remember that this phytocannabinoid has a range of important

therapeutic benefits. These effects may be mediated both by cannabinoid receptors,

either CB1 and CB2 receptors or novel GPCRs, and non-cannabinoid targets.

3 Δ9-Tetrahydrocannabivarin

O

OH

2

Δ9-Tetrahydrocannabivarin (2) is included in the Δ9-THC chemical class which, as

mentioned earlier, constitutes the majority of the phytocannabinoid content [1] of

C. sativa. This phytocannabinoid is the n-propyl analog of 1, with the slight

structural change resulting in some different molecular targets and physiological

effects when compared to 1.

3.1 Activity at Cannabinoid Receptors

In vitro, 2 is a CB2 receptor partial agonist, as shown by its lower efficacy at CB2

receptors than the agonist CP-55940 in both CHO cells transfected with human CB2

receptors and in the GTPγS binding assay in membranes from these cells, as shown

in Table 2 [70].

Importantly, there is also in vivo evidence of 2 as a CB2 receptor partial agonist.

Garcia and co-workers showed that 2 (2 mg kg�1) can show signs of

neuroprotection in a model of Parkinson’s disease in mice that have received
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intrastriatal injections of lipopolysaccharide (LPS), similar to the effects shown by

the CB2 selective agonist HU-308 [71]. CB2 receptor-deficient mice were more

vulnerable to LPS-induced lesions, which supports the effects of 2 being mediated,

at least in part, by agonism at CB2 receptors.

At low concentrations (0.1–5 μM), 2 blocks CB1 receptors both in vitro and

in vivo, but interestingly at high doses acts as a CB1 agonist in vivo but not in vitro.
Two studies reported that 2 blocks the agonist effects of CP-55940- and (+)-(R)-
WIN55212-induced stimulation of GTPγS binding to mouse whole membranes at a

low concentration of 1 μM (Table 2) [72, 73], while Dennis and co-workers showed,

using the same assay, this antagonistic effect of 2 from the lower concentration of

0.1 μM up to 5 μM on (+)-(R)-WIN55212 in the mouse cerebellum and piriform

cortex membranes [74]. The antagonist effect of 2 is the same as two established

CB1 receptor-selective antagonists, rimonabant and AM251 [72, 73, 75, 76]. Thus,

antagonism of CB1 receptors by 2 modulates inhibitory neurotransmission in the

cerebellum [76].

In vivo, 2 acts as both an antagonist and agonist at low doses and high doses,

respectively. This antagonist and agonist phenomenon results in opposing effects

on antinociception and on locomotor activity depending on the concentration used.

This disparity in pharmacological effect of 2, dependent upon the concentration

used, highlights the importance of knowing the concentration of each phyto-

cannabinoid in whole cannabis plant material and extracts when this is being

used for therapeutic use.

At low doses of 0.3 and 3 mg kg�1, 2 blocks the antinociceptive effect of 1 in a

mouse model of acute pain and hypothermia [72]. Using the same model, 2 also

partially antagonized the CB1 agonist effects of CP-55940 at a dose of 2 mg kg�1

and also partially antagonized CP-55940-induced inhibition of rat locomotor activ-

ity in a model of Parkinson’s disease [71]. There was no effect of 2 treatment alone

on either of these parameters and therefore these studies support the molecular

antagonism of 2 at CB1 receptors.

At higher doses of 3, 10, 30, and 56 mg kg�1, 2 acts as an agonist by producing

antinociception in an acute model of pain and causes immobility in the ring test

(a quantitative test for measuring catalepsy [65]) [72]. In this study, the CB1

receptor antagonist rimonabant blocked the agonist effect of 2 on antinociception

but not on immobility in the ring test. A rimonabant-only treatment group was not

included in this study to rule out whether this antagonist worsens nociceptive pain.

It is therefore not clear from this study whether the effect found is functional or

molecular.

In other in vivo experiments, 2 (3, 10, 30 mg kg�1) suppressed food consumption

in non-fasted mice, similar to the CB1-selective antagonist AM251 [77]. Signs of

motor inhibition, induced by 6-hydroxydopamine, were reduced by 2 (2 mg kg�1),

similar to the effect of the CB1 antagonist, rimonabant [71]. It is unclear without

further investigation whether this effect of 2 is via inverse agonism of the CB1

receptor, competitive inhibition with endogenous cannabinoids at CB1 receptors or

by activity at another target, since comparisons made were based on functional

effects of the compounds without confirmation of the molecular targets [78].
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3.2 Cannabinoid Receptor Independent Activity

There is little available evidence to suggest that 2 acts at CB1 or CB2 receptor-

independent targets but it may have other targets within the cannabinoid system,

such as the novel cannabinoid receptor GPR55 [69]. There is, however, only one

study to date describing agonism of GPR55 receptors by 2 [69]. In this investiga-

tion, 2 was an agonist of GPR55 in HEK293 cells expressing human GPR55 with a

similar potency to 1 (Table 4) and 1 μM 2 was shown to inhibit LPI induced

stimulation of GPR55 with 50% efficacy, higher than that of 1 [69].

The evidence of 2 acting at targets outside the cannabinoid system comes from

the proven interaction between 2 and transient receptor potential (TRP) cation

channels at higher concentrations than at which it acts at CB1 or CB2 receptors

[79–81].

Despite there being limited known pharmacological targets for 2, its activity at

TRP channels may have wide-reaching physiological effects. These TRP channels

are present in the plasmamembrane of a broad range of cell types in many tissues and

act as ligand-gated, non-selective cation channels permeable to sodium, calcium and

magnesium ions, thereby being powerful regulators of many cell functions [82].

De Petrocellis and co-workers studied the efficacy and potency of numerous

phytocannabinoids at various TRP channels [79–81]. At TRPA1 and TRPV1 cation

channels, 2 is an agonist with the same high potency and at TRPV2 with a slightly

Table 4 A comparison of selected in vitro studies showing cannabinoid receptor independent

activity of Δ9-trans-tetrahydrocannabivarin (2) according to concentrations, assay types, and cell

types used

Target

Concentration/

μM
EC50/

μM
IC50/

μM Assay Cell type Ref.

GPR55 >1 0.88 ERK1/2 MAPK

phosphorylation

HEK293/Human [69]

1 ND ERK1/2 MAPK

phosphorylation

HEK293/

Human

5HT1A <1 5.4 GTPγS binding assay

8-OH-DPAT

Brainstem mem-

branes/Rat

[169]

28.3 GTPγS binding assay

8-OH-DPAT

CHO cells/

Human

TRP cation channels

TRPA1 1–10 1.5 Ca2+ fluorescence

assay

HEK293/Rat [80]

TRPM8 <1 0.87 HEK293/Rat

TRPV1 1–10 1.5 HEK293/

Human

TRPV2 4.1 HEK293/Rat

TRPV3 3.8 HEK293/Rat [81]

TRPV4 6.4 HEK293/Rat

See Tables 1 and 2

Molecular Pharmacology of Phytocannabinoids 73



lower potency. The TRPM8 cation channels are blocked by 2 with relatively high

potency (Table 4) [80].

In summary, 2 is known to be an antagonist at CB1 receptors at low concentra-

tions both in vitro and in vivo but at high concentrations it shows agonistic effects at

CB1 receptors only in vivo. This antagonistic effect at CB1 receptors has been

shown to have adverse effects in the clinic, with removal of the CB1 receptor

antagonist, rimonabant, from the market due to adverse psychological effects

[83]. In vivo and in vitro evidence supports partial agonism activity at CB2

receptors and at higher concentrations than at which it activates cannabinoid

receptors it has activity at TRP cation channels, which may have benefits for

regulating a variety of cell functions.

4 Cannabinol

OH

O
3

Cannabinol (3) is an oxidation product of 1 and is found in large quantities in dried

and aged cannabis material [84]. The acid form of 3 is also found in large quantities

in the cannabis plant but upon heating this acid is decarboxylated to 3 [84]. This is

important to take into account when considering how cannabis that is being used

for medicinal or recreational purposes is processed, and stored, and how it is

administered.

4.1 Activity at Cannabinoid Receptors

Cannabinol (3) like 1, acts at both CB1 and CB2 receptors but with higher affinity

for CB2 than CB1 receptors, as shown in Table 2 [85–87]. It is an agonist at CB1

receptors [29], but there are conflicting reports about its activity at CB2 receptors. In

COS-7 cells transfected with rat CB2 receptors, 3 acted as a CB2 receptor agonist in

the cyclic AMP assay at 1 μM [85] but in another study performed in CHO cells

transfected with human CB2 receptors, 3 acted as an inverse agonist in the GTPγS
binding assay at submicromolar concentrations [88]. These discrepancies may be

due to the differences in concentrations of 3 used between the studies and could also

depend on the conformational state of the receptors in the tissues. Receptors can

either be in the active conformational state, where G-proteins are activated and
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elicit a physiological response, or the inactive conformational state, where there is

no activation of G-proteins. The amount of receptors in either state can differ in

different tissues and under different conditions. If a ligand has a greater affinity for

a specific conformational state (active or inactive), then the presence of the ligand

will cause a redistribution of the concentrations of each conformational state. Thus,

the concentration of ligand present will dictate the distribution of the receptor

conformational state and either induce or inhibit a physiological response [89]. Fur-

ther investigations are warranted to determine the activity of 3 at CB2 receptors.

In vivo, 3 (50 mg kg�1) has been shown to be a CB1 receptor agonist by

suppressing acetic acid-induced abdominal stretching behavior in mice, which

was blocked by the CB1 antagonist, rimonabant. The administration of rimonabant

alone did not significantly affect abdominal stretching, indicating that this effect of

3 is likely to be a molecular one [90]. Moreover, in this study, the effect of 3 on

locomotor suppression was also investigated. This was performed to determine

whether the effect of 3 on hypomotility could be excluded from the observed effect

of 3 on abdominal stretching behavior. The dose of 3 used (50 mg kg�1) did not

elicit locomotor suppression thereby indicating the suppression of abdominal

stretching was not due to motor dysfunction [90].

Additionally, 3 (0.26–26.0 mg kg�1 p.o.) exerts CB1 receptor-dependent effects

on rat feeding behavior by decreasing latency to feed and increasing food con-

sumption over the whole test period with these effects being abolished in the

presence of rimonabant [91]. However, a rimonabant-only treatment group was

not included in this study and therefore it is not clear whether this effect of 3 is via

functional mechanisms or molecular mechanisms. In numerous other feeding

studies rimonabant decreases food consumption [92–94], but there is speculation

as to whether this is due to suppressive effects of rimonabant on spontaneous

locomotion [95, 96] and stimulation of emesis and nausea [97–99]. Together with

these studies it is unclear whether the effects of 3 and rimonabant on feeding are

mediated via molecular mechanisms.

For further information on binding affinities of 3 at CB1 and CB2 receptors, see

Table 2.

4.2 Cannabinoid Receptor Independent Activity

Cannabinol also acts at targets outside of the endocannabinoid system. It is a potent

agonist of TRPA1 cation channels, potently blocks TRPM8 cation channels, and

also desensitizes TRPA1 cation channels to activation by the agonist allyl isothio-

cyanate (Table 5) [80].

There is little recent literature on the pharmacology of 3 and thus further

investigations need to be conducted to determine whether this compound has

other therapeutic or recreational effects and how it modulates or enhances the

physiological effects of whole cannabis-derived preparations.
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5 Cannabidiol

OH

HO

4

Cannabidiol (4) is a non-psychotropic phytocannabinoid and the 4 chemical class

type of phytocannabinoids is currently the third most abundant chemical class type

in cannabis, after 1 and 6 [1]. Another phytocannabinoid in this class,

cannabimovone, was isolated in 2010 [100], thereby increasing the number of

phytocannabinoids of this type from seven in 2005 [101] to eight [1]. This class

now makes up 7.7% of phytocannabinoid content (Table 1).

5.1 Activity at Cannabinoid Receptors

Cannabidiol (4) has been investigated in a number of studies to determine its

activity at cannabinoid receptors and shows very low affinity at these receptors

(Table 2) [102, 103]. There has been a single report where 4 was shown to act as an

antagonist of both CB1 and CB2 receptors at submicromolar concentrations

[104]. However, a meta-analysis examining interspecies differences in ligand-

binding affinity and receptor distribution identified eight methodological covariates

Table 5 A comparison of selected in vitro studies showing cannabinoid receptor independent

activity of cannabinol (3) according to concentrations, assay types, and cell types used

Target

Concentration/

μM
EC50/

μM
IC50/

μM Assay Cell type Ref.

TRP cation channels

TRPA1 <1 0.18 0.4 Ca2+ fluorescence assay HEK293/Rat [80]

TRPM8 0.21 HEK293/Rat

TRPV1 1–10 6.2 HEK293/

HumanTRPV2 >10 19.0

TRPV3 1–10 5.3 HEK293/Rat [81]

TRPV4 >10 16.1 HEK293/Rat

CYP1A1 1–10 0.685 fluorescence assay—

FLUOSTAR OPTIMA

Recombinant/

Human

[167]

CYP1A2 3.92

CYP1B1 1.50

CYP2C9 1–10 2.86 HPLC Recombinant/

Human

[168]

See Tables 1 and 2
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that could explain the discrepancies between results from various studies on

cannabinoid receptor affinity for 4 [105]. A more recent meta-analysis from the

same group concluded that 4 has very low affinity as an orthosteric ligand for CB1

receptors (Table 2), but may affect CB1 receptor activity in vivo via an indirect

mechanism [78]. However, a study recently published showed that 4 can act as a

negative allosteric modulator of CB1 receptors [106]. Allosteric modulators alter

the potency and efficacy of the orthosteric ligands but do not activate the receptor

themselves. The allosteric effects of 4 were studied using an operational model of

allosterism [107] and the effects of 4 treatment compared to the well-characterized

negative allosteric modulators ORG2759 and PSNGBAM-1 [108–111]. The effi-

cacy of both of the orthosteric ligands, 1 and 2-AG, was reduced by 4 (<1 μM) and

4 displayed negative co-operativity for binding of these ligands. Moreover, 4-

treatment reduced G-protein dependent signaling and arrestin 2 recruitment, similar

to the effects of the negative allosteric modulators ORG2759 and PSNCBAM-1

[109, 112]. This allosteric modulation of CB1 receptors needs to be validated by

further studies, but the results from this study could explain the reported ability of

4 to functionally antagonize some effects of 1 in animal studies and clinical studies

in humans (for a review see [113]).

Compound 4 has an effect in vitro of inhibiting anandamide uptake and therefore

affecting endocannabinoid tone by increasing availability of anandamide. The

concentration at which 4 exerts its half maximal response, however, is higher

than what would be relevant for a physiological effect in vivo [80].

5.2 Cannabinoid Receptor Independent Activity

Despite 4 showing very little affinity for CB1 and CB2 receptors, as described

above, there is evidence of an antagonist effect of 4 at the novel cannabinoid

receptor GPR55 both in vitro and in vivo. At a concentration of 1 μM, 4 suppressed

the activation of GPR55 in rat hippocampal slices, thus suppressing excitatory

output from pyramidal cells [114]. In a GTPγS-binding assay, 4 had potent antag-

onist effects at GPR55 with a submicromolar half maximum response (Table 6)

[67]. Whyte and co-workers have shown a role for GPR55 in bone physiology,

regulating osteoclast formation and function and bone mass [115]. This group

reported that administration of 4 (10 mg kg�1) to mice three times daily for

8 weeks significantly reduced bone resorption in these mice.

Outside of the endocannabinoid system, 4 has numerous targets and its activity

at these targets results in a variety of physiological effects. Some of these physio-

logical effects may be mediated by more than one target, such as the anti-

inflammatory and immunosuppressive effect of 4. These effects are mediated by

both adenosine mechanisms and via strychnine-sensitive glycine receptors, as

detailed in the following paragraphs.
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Activity of 4 at one target may also elicit various physiological effects. This is

shown by 4 having anti-inflammatory effects and antiarrhythmic effects both

mediated by adenosine mechanisms. Another example refers to the 5HT serotonin

receptors of a target where 4 acts to mediate multiple physiological effects such as

acute autonomic responses to stress, nausea and vomiting, cerebral infarction and

anxiolytic, panicolytic, and antidepressant effects. The sections below will describe

in more detail the studies that support evidence for the numerous and varied

physiological targets of 4.

It is known that 4 has anti-inflammatory and immunosuppressive effects, but

these effects have been shown to be mediated by multiple pharmacological targets,

as detailed below. The mechanisms by which 4 possibly mediate anti-inflammatory

and immunosuppressive effects include: activity at A1A and A2A adenosine recep-

tors and the inhibition of the equilibrative nucleoside transporter [116] and the

activation of strychnine-sensitive α1 and α1β glycine receptors [117, 118].

The effects of 4 mediated via adenosine have been shown in both in vitro and

in vivo studies. Uptake of [3H] adenosine was inhibited by 4 in murine microglia

and RAW264.7 macrophages by a mechanism of binding to the equilibrative

nucleoside transporter 1 (ENT1) and competitively inhibiting this nucleoside trans-

porter with a Ki value of less than 0.25 μM and a submicromolar half maximal

response [116] (Table 6). In addition to inhibition of ENT1 uptake of adenosine, the

authors also documented in vivo that 4 could bind and activate the A2A receptor,

since the effects of 4 on tumor necrosis factor α (TNF α) were abolished by an A2A

receptor antagonist and by genetic deletion of this receptor [116]. An in vivo effect

of 4 on anti-inflammatory effects mediated by the A2A receptor was shown with

lipopolysaccharide-induced inflammation in the rat retina [119] and in the mouse

lung [120], both using the A2A receptor antagonist ZM241385. The study by Liou

and co-workers that indicated inhibition of adenosine uptake by ENT1 is important

in the anti-inflammatory effects of 4 both in vitro and in vivo in the rat retina [119].

These studies clearly indicated that 4 has immunosuppressive effects that are

mediated via adenosine mechanisms. This immune-suppressive effect is important

in limiting cellular stress and inflammation and perhaps explains the effect of 4 on

improving arthritis and multiple sclerosis symptoms. Its immunosuppressive effects

in microglia would have considerable benefits for a number of neurodegenerative

conditions.

The anti-inflammatory effects of 4mediated through strychnine-sensitive α1 and
α1β glycine receptors have also been shown in in vitro and in vivo studies but the

in vitro study detailed below would be physiologically irrelevant due to the high

concentrations used to elicit an effect that would not be achieved in vivo. The study

used a whole cell patch clamp technique to show that 4, at a mid-micromolar range,

had positive allosteric modulating effects at these glycine receptor subunits and at

higher concentrations showed direct activation of these receptor subunits

(Table 6) [117].

It has also been reported that 4 has anti-inflammatory actions and suppresses

neuropathic pain in vivo, mediated by glycine receptors. In α3 glycine channel

knockout mice injected with Freund’s adjuvant into the hind paw, the anti-
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inflammatory effects of 4 (50 mg kg�1 i.p.) in this model of inflammatory pain were

abolished [118].

Another physiological effect of 4 mediated via adenosine mechanisms is its

antiarrythmic effect, shown by inhibiting ventricular tachycardia in rats [121]. This

effect was shown using a low dose of 4 of 50 μg kg�1 and agonism of the A1A

receptor by 4 was validated by administration of the selective antagonist,

8-cyclopentyl-1,3-dipropylxanthine (DPCPX), at 100 μg kg�1. In the presence of

this selective antagonist, these effects of 4 were abolished [121]. Importantly, this

effect was also determined to be a molecular effect rather than a functional one

since a DCPX-only treatment group showed no effect on the incidence or duration

of arrhythmias.

Significant evidence supports 4 producing its effects via serotonin (5-HT)

receptors, predominantly the 5HT1A receptor subtype but also the 5HT3A receptor

and less so at the 5HT2A receptor. As described above, activity at these receptors

mediates a variety of physiological responses.

In two in vitro studies, first in Chinese hamster ovary (CHO) cells [122] and

more recently using rat brainstem membranes [123], 4 was found to enhance the

ability of a 5HT1A agonist, 8-OH-DPAT, to stimulate GTPγS binding at

submicromolar concentrations (Table 6).

In vivo, 4 induces various 5HT1A-mediated physiological responses. These

include attenuation of: acute autonomic responses to stress, nausea and vomiting,

and cerebral infarction, and induction of anxiolytic, panicolytic, and antidepressant

effects [123–133]. Studies with evidence supporting these effects are detailed

below.

At doses of 1, 10, or 20 mg kg�1 (i.p.) of 4 in male Wistar rats, this compound

dose-dependently reduced the acute autonomic response to restraint stress and

reduced the anxiety behavior caused by previous exposure to restraint

[124]. These effects of 4 were blocked by the 5HT1A receptor antagonist,

WAY100635 (0.1 mg kg�1), while by itself WAY100635 did not have an effect

on cardiovascular or anxiogenic responses, indicating this to be a molecular effect

[124]. Another study reported that 4 administration directly into the dorsal

periaqueductal gray via an implanted cannula in rats elicits panicolytic effects by

inhibiting escape responses in the elevated T maze via 5HT1A mediated responses.

These responses were blocked by treatment with WAY100635 [125]. In both of

these studies, a WAY100635-only treatment group was not used and therefore these

results are not indicative of a molecular effect.

Activation of 5HT1A receptors has been regularly related to the therapeutic

effect of antidepressant treatments [130] and a reduced number/affinity of postsyn-

aptic 5HT1A receptors in the brains of depressed individuals has been reported by a

number of studies [131, 132]. The first study to investigate whether there is a link

between these receptors and the antidepressant effects of 4 was conducted quite

recently by Zanelati and co-workers [126]. Mice received i.p. injections of 3, 10,

30, and 100 mg kg�1 4 and were then subjected to the forced swimming test. This

test is predictive of antidepressant-like activity [133]. Immobility time was reduced

by 4 and showed a bell-shaped response, since 4 was only effective at 30 mg kg�1
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and not at the lower or higher doses [126]. The 5HT1A receptor antagonist

WAY100635 blocked the effects of 4 on antidepressant-like activity but mediation

of this effect by 5HT1A receptors was not validated by use of a WAY100635-only

treatment group.

Various studies have reported 4 to have antiemetic- and antinausea-like effects

and this is thought to be mediated by 5HT1A receptors. Unlike 1, for which the

antiemetic effects are mediated by both CB1 receptors and 5HT receptors

(as described in Sect. 2.2), it appears that 4 exerts its antiemetic effects primarily

through 5HT receptors. Three studies showed that a low dose of 4 (5 mg kg�1 i.p.)

suppressed nicotine, cisplatin, and lithium chloride-induced vomiting in house

musk shrews (Suncus murinus) [123, 127, 128] and lithium chloride-conditioned

gaping in rats [123]. This suppression of vomiting and conditioned gaping was

abolished by pre-treatment with the 5HT1A receptor antagonists, WAY100135 and

WAY100635 [123], but since an antagonist-only treatment group was not included

in this study, an effect of 4 being mediated by 5HT1A receptors has not been

validated and it only showed a functional effect.

Neuroprotective effects of 4 have been shown through increasing cerebral blood

flow and reducing infarct volume in a mouse model of middle cerebral artery

occlusion [129]. This effect has been claimed to be CB1 receptor independent

[134] and in this study the effects of 4 were opposed by WAY100135 but not by

the CB1 receptor antagonist, rimonabant [129]. The neuroprotective effects of

4 have been claimed here to be mediated by 5HT1A receptors but since a

WAY100135-only treatment group was not included, this effect may be functional

rather than molecular.

The only study to date investigating 4 activity at 5HT3A receptors in vitro was

conducted using Xenopus laevis oocytes expressing mouse 5HT3A receptors using

two electrode voltage clamp techniques [135]. In this study, 4 reversibly inhibited

5HT evoked currents in a concentration-dependent manner, which indicated that

4 is a non-competitive antagonist of 5HT3A receptors (Table 6) [135]. This antag-

onist activity of 4 at 5HT3A receptors may also be involved in the control of pain

and emesis as described for 1 [46–50].

Activity of 4 at 5HT2A receptors seems to be minimal and studies to date are not

physiologically relevant, as shown with the high concentrations used in the follow-

ing study. Using NIH/3 T3 cells expressing rat 5HT2A receptors, 4 showed activity

as a partial agonist but only at a concentration of 32 μM and furthermore it only had

50% efficacy at displacing [3H]-ketanserin [122]. The concentration used here

would not be reached in vivo.

Unlike most of the other phytocannabinoids, 4 has been reported to act at TRP

cation channels not just in vitro but in vivo as well. In vitro, 4 has been reported by

numerous studies to activate TRPV1, TRPV2, and TRPA1 channels [80, 136–139]

in HEK293 cells expressing these channels (Table 6). The TRPA1 channels are

potently activated by 4, with this compound being the second most potent agonist at

this channel of all the phytocannabinoids tested in this study (Table 6) [80]. Indeed,

all phytocannabinoids mentioned in this chapter, except cannabichromene (7),

antagonize the Ca2+ elevation response induced by the agonist icilin [79, 80], but

82 S.E. Turner et al.



4 is the most potent antagonist at this channel (Table 6) [80]. Moreover, in a recent

study using whole cell patch clamp techniques on HEK293 transfected cells, it was

shown that 4 (3, 10, 30 μM) dose-dependently activated and rapidly desensitized

TRPV1, TRPV2, and TRPA1 channels [139]. The TRPV3 channels are activated by

4 with high efficacy (50% higher than that of ionomycin) and high potency

(Table 6) [81].

In vivo, 4 shows possible activity at TRPV1 channels in mice and rats [102–104]

and TRPA1 channels in rats [140]. The effects of 4 in one of these studies was

blocked by the TRPA1 selective antagonist, AP18, and by the TRPV1 selective

antagonist, 5-iodo-resiniferatoxin, indicating involvement of these channels in the

tail-flick related antinociception effects of 4 in anesthetized rats [140]. However,

these antinociceptive effects were also blocked by the CB1 receptor-selective

antagonist, AM251, the 5HT1A receptor antagonist, WAY100635, and also the

adenosine A1-selective antagonist [140]. This indicated that the descending path-

way of antinociception in rats is possibly mediated by various mechanisms and the

mechanism by which 4 mediates antinociception needs to be explored further.

The non-psychotropic quality of 4 provides promise for its use in the clinic

and its “taming” of the effects of 1 have also proven beneficial in a licensed

cannabis extract medication currently on the market in several countries,

Sativex®. This medication is for the treatment of spasticity in multiple sclerosis

patients and contains equal ratios of 4 and 1. Here 4 functionally, not molecu-

larly, antagonizes the undesirable effects of 1, thus increasing its therapeutic

index [113]. This reported “antagonism” may be explained by the negative

allosteric modulation of CB1 receptors as described in Sect. 5.1. Under the

names Epidiolex® [141] and Cannabidiol Oral solution [142], 4 has been

granted Orphan Drug designation by the U.S. FDA for treatment of Dravet

syndrome and Lennox-Gastaut syndrome, both of which being forms of

childhood-onset epilepsy. Epidiolex is in Phase 3 trials for Dravet syndrome

and Lennox-Gastaut syndrome and Cannabidiol Oral Solution is in Phase 1 clin-

ical trials for both these syndromes [141, 142]. Epidiolex is also nearing the end

of Phase 2 trials for tuberous sclerosis, a genetic disease that results in benign

tumor growth in the brain and other vital organs. Novagant Corp. has released

GoldenCBD™ in capsule and liquid form. This is cannabidiol-rich hemp oil that

is being marketed as medical marijuana for people living outside the states of

Washington and Colorado in the USA [143].

6 Cannabidivarin

OH

HO

5
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Cannabidivarin (5) is the n-propyl analog of 4, therefore being part of the 4 chemical

class type (Table 1) and like 4 it is non-psychotropic. Little is known about the

pharmacological properties of 5 [103] and how it exerts its therapeutic benefits. It

was first isolated in 1969 by Vollner and co-workers [103], but, since its classifi-

cation, relatively few studies have been conducted to determine its pharmacological

profile.

6.1 Activity at Cannabinoid Receptors

Pure 5 and 5-enriched cannabis extracts are known to be CB1 independent due to

the lack of effect onmotor function in a battery of motor tasks [2, 144]. Additionally,

in a CP-55940 radioligand-binding assay using MF1 whole mouse brain and in

CHO cells expressing human CB1 receptors, pure 5 only displaced CP-55940 at the

highest concentration tested (10 μM) and a 5-enriched extract showed very weak

affinity for CB1 receptors, displacing CP-55940 only weakly [2]. For a summary of

5 binding affinities to CB1 and CB2 receptors, see Table 2.

6.2 Cannabinoid Receptor Independent Activity

De Petrocellis and co-workers showed 5 to have agonist and antagonist effects at

(TRP) cation channels. At human TRPA1 channels, 5 is a potent agonist and a less

potent agonist at human TRPV1 and TRPV2 channels [80]. In this study, when

5 was given to TRPM8 transfected HEK293 cells, it antagonized the Ca2+ elevation

response elicited by the agonist icilin. With the same potency, 5 induced

intracellular Ca2+ elevation at the TRPV4 channel and is also an agonist at

TRPV3 channels (Table 7) [81].

A recent study using whole cell patch clamp techniques on HEK293 transfected

cells reported that 5 (3, 10, 30 μM) dose-dependently activated, and rapidly

desensitized, TRPV1, TRPV2, and TRPA1 channels [139]. Previous work has

shown 5 to have antiepileptiform activity in rat hippocampal slices [144] and

Iannotti and co-workers showed there to be significant TRPV1 transcript expression

in rat hippocampal slices [139]. This group therefore conducted multi-electrode

array (MEA) experiments, which showed that 5 and the TRPV1 agonist, capsaicin,
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produced similar effects on epileptiform activity induced in rat hippocampal slices.

The effects of capsaicin on burst amplitude were reversed by the selective TRPV1

antagonist, IRTX, but the effects of 5 were not. This indicated that the anti-

epileptiform effects of 5 are not mediated by activity at TRPV1 channels [139].

In vivo, 5 has been shown to display anticonvulsant properties in various acute

animal models of seizure [144] and is currently in Phase 2 clinical trials as an

antiepileptic drug [141]. The mechanism of action underlying these effects, how-

ever, is yet to be determined. In the pentylenetetrazole (PTZ) model of acute

seizure, 5 (400 mg kg�1 p.o.) exhibited anticonvulsant effects by significantly

reducing PTZ-induced seizure activity, in male Wistar rats, which was correlated

with changes in gene expression of various epilepsy-related genes [145]. Of note is

the clinical relevance of the route of administration used in this study (per os)

compared to other in vivo studies where administration is via non-clinically rele-

vant routes. The mechanism by which 5 induces changes in these epilepsy-related

genes requires investigation.

Apart from currently being in clinical trials for epilepsy, 5 is also in clinical trials

for glioma, type-2 diabetes and schizophrenia and has received U.S. FDA Orphan

Drug Designation for neonatal hypoxic-ischemic encephalopathy [141]. This

phytocannabinoid, like 4, is therefore proving to be a promising therapeutic con-

stituent of cannabis.

Table 7 A comparison of selected in vitro studies showing cannabinoid receptor independent

activity of cannabidivarin (5) according to concentrations, assay types, and cell types used

Target

Concentration/

μM
EC50/

μM
IC50/

μM Assay Cell type Ref.

GPR55 <1 0.4 ERK1/2 MAPK

phosphorylation

HEK293/

Human

[69]

TRP cation channels

TRPA1 1–10 ND ND Whole cell patch

clamp

Hipocampal

slices/Rat

[139]

<1 0.42 Ca2+ Fluorescence

assay

HEK293/Rat [80]

TRPM8 0.9 HEK293/Rat

TRPV1 1–10 3.6 HEK293/

Human

1–10 ND ND Whole cell patch

clamp

Hippocampal

slices/Rat

[139]TRPV2

1–10 7.3 Ca2+ Fluorescence

assay

HEK293/Rat [80]

TRPV3 1.7 HEK293/Rat [81]

TRPV4 <1 0.9 HEK293/Rat

See Tables 1 and 2
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7 Cannabigerol

6

OH

HO

Cannabigerol (6) is another non-psychotropic phytocannabinoid and its chemical

class type is the second most abundant in the cannabis plant, making up 16.3% of

the phytocannabinoid content [1]. The carboxylic acid form of this phyto-

cannabinoid, cannabigerolic acid (CBGA), is very important for the synthesis of

other phytocannabinoids. In fresh cannabis plant material, phytocannabinoids are

present in their carboxylic acid forms [146]. Cannabigerolic acid is the precursor to

the acid forms of three phytocannabinoids: Δ9-tetrahydrocannabinolic acid (Δ9-

THCA), cannabidiolic acid (CBDA), and cannabichromenic acid (CBCA) [147–

149]. Cannabigerovaric acid (CBGVA) is the precursor of the n-propyl analogues
of the carboxylic acid derivatives Δ9-THCVA, CBDVA, and CBCVA [146]. Upon

heating and storage of cannabis plant material these acid forms undergo decarbox-

ylation to produce the non-acid forms, such as 1 and 2 [150]. Furthermore, under

prolonged storage and drying some of these non-acid forms undergo oxidative

catabolism to other phytocannabinoids. An example of this is oxidative catabolism

of 1 to 3, as described in Sect. 4 [84]. This phytocannabinoid was first isolated by

Gaoni and Mechoulam in 1964 [151] and since then only a few studies have been

conducted to investigate its pharmacological actions.

7.1 Activity at Cannabinoid Receptors

The non-psychotropic effect of 6 is explained by its low affinity for CB1

receptors (Table 2) [103] and it has been shown in vivo to not produce

psychotropic effects like 1 [152]. It does however affect endocannabinoid tone

indirectly by inhibiting anandamide uptake, thereby increasing levels of anan-

damide, as shown in Table 8.
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7.2 Cannabinoid Receptor Independent Activity

Despite the relatively few investigational studies conducted, there is evidence of

pharmacological actions at a number of targets. In a study using mouse brain

membranes, 6 acted as a potent α2 adrenoceptor agonist [153]. The same study

found 6 to moderately block 5HT1A receptors with a KB value of 0.0519 μM. This

effect is opposite to that of 4 on 5HT1A receptors and explains the ability of 6 to

antagonize the antinausea and antiemetic effect of 4 [154].

Like many phytocannabinoids, 6 interacts with numerous TRP cation channels.

It is a potent TRPA1 agonist, a weak agonist at TRPV1 and TRPV2 and a potent

TRPM8 antagonist (Table 8) [80].

Table 8 A comparison of selected in vitro studies showing cannabinoid receptor independent

activity of cannabigerol (6) according to concentrations, assay types, and cell types used

Target

Concentration/

μM
EC50/

μM
IC50/

μM Assay Cell type Ref.

GPR55 1–10 2.16 ERK1/2 MAPK

phosphorylation

HEK293/

Human

[69]

α2
adrenoceptor

<1 0.0002 GTPγS binding

assay

Brain mem-

branes/Mouse

[153]

0.072 Electrically

invoked

contractions

Vas deferens/

Mouse

TRP cation channels

TRPA1 1–10 3.4 Ca2+ Fluorescence

assay

HEK293/Rat [79]

<1 0.7 HEK293/Rat [80]

TRPM8 0.16 HEK293/Rat [79]

0.16 HEK293/Rat [80]

TRPV1 1–10 1.3 HEK293/

Human

TRPV2 1.72 HEK293/Rat

TRPV3 1.0 HEK293/Rat [81]

TRPV4 5.1 HEK293/Rat

Anandamide

uptake

11.3 [14C]-AEA uptake RBL-2H3

cells/Rat

[80]

AEA, anandamide (arachidonoylethanolamine); also see Tables 1 and 2
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8 Cannabichromene

O

OH

7

Cannabichromene (7) is one of the most abundant phytocannabinoids naturally

occurring in the cannabis plant, with its chemical class type making up the same

percentage as that of the 4 chemical class type (Table 1) [1, 151, 155]. It was

discovered independently by Claussen and co-workers and Gaoni and Mechoulam

in 1966 [103].

8.1 Activity at Cannabinoid Receptors

Cannabichromene has not been found to have significant affinity for CB1 or CB2

receptors as shown in Table 2 but it does, however, affect endocannabinoid tone

indirectly by inhibiting cellular uptake of anandamide (Table 9) [80].

8.2 Cannabinoid Receptor Independent Activity

The most notable pharmacological action of 7 to date is most likely its effect at TRP

cation channels. At TRPA1 channels, 7 was found to be the most potent agonist of

all the phytocannabinoids tested and also desensitized the TRPA1 channel to

activation by the agonist allyl isothiocyanate [80]. At a lower potency, but still

within the lower micromolar range, 7 was able to activate TRPV3 and TRPV4

channels and also desensitize TRPV4 channels to an agonist (9.9 μM) [81]. At the

TRPV2 channel, 7 was only found to desensitize the channel and although 7 was

found to block TRPM8 channel activation, this was at a very low potency [80] and

would not be deemed physiologically relevant in vivo (Table 9) [23].

At a concentration of 1 μM, 7 has also been reported to act via ATP upregulation

and adenosine signaling to raise the viability of adult mouse neural stem/progenitor

cells (NSPCs) during differentiation [156]. The adenosine A1A receptor selective

antagonist, DPCPX, countered the stimulation of ERK1/2 phosphorylation by 7 and

the upregulation of the astrocyte marker nestin by 7.
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9 Conclusions

This chapter has reviewed the molecular pharmacology of the seven most thor-

oughly studied phytocannabinoids and demonstrated that each has a diverse set of

pharmacological targets with varying therapeutic, recreational and toxicological

effects. Even slight structural differences between the phytocannabinoids can

produce very diverse and competing physiological effects. Investigations into

some of the phytocannabinoids have produced conflicting results, as mentioned in

this chapter. Thus, it is critical to take into account the differences in assays used,

the species from which the target is taken and the concentrations used in in vitro

studies in order to predict the pharmacology of the phytocannabinoids at the system

level. It is important that the concentrations used to elicit a response in vitro are

indicative of the levels that will be reached after administration in animal models or

in the clinic, otherwise no predictions can be made on the physiological relevance

of results from in vitro studies. As highlighted by McPartland and co-workers, it is

imperative that when analyzing the results of various studies one takes into account

interspecies differences in receptor distribution and differences among different

tissues and cell types [105]. Moreover, it is also important when designing exper-

iments to look at the therapeutic benefits of a phytocannabinoid that the species

used, route of administration of the compound, and concentrations used are clini-

cally relevant, i.e. applicable to the end target species. It is therefore important to

assess species differences in receptor orthologues and distribution, remembering

that there are molecular divergences between human and rodent orthologues such

as, for example, within the endocannabinoid system [157].

This chapter has also highlighted the importance of each individual phyto-

cannabinoid in mediating the therapeutic and recreational effects of cannabis.

Two phytocannabinoids, 4 and 5, may prove to be clinically useful constituents

of cannabis. Both phytocannabinoids have been granted Orphan Drug designation

by the U.S. FDA for a number of seizure-related disorders and, as a result, Phase II

and III clinical trials are underway [141–143]. The conduct of formal clinical trials

using these non-Δ9-tetrahydrocannabinol phytocannabinoids could stimulate new

research of cannabis and its constituents and see additional phytocannabinoids

objectively assessed for therapeutic potential. Even though research on individual

phytocannabinoids has been conducted for many years, still much more research is

warranted. The cannabis plant contains about 120 phytocannabinoids, which shows,

in reality, how little research has been conducted on these compounds.

Further research on the “known” phytocannabinoids as well as the “unknown”

phytocannabinoids would greatly advance our understanding of these substances

alone as well as in conjunction with each other or as part of a whole in cannabis.

Acknowledgements We would like to thank Prof. Simon Gibbons for providing the figures of the

phytocannabinoid structures.
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