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Introduction

Cannabis dependence (CD) affects over 13 million indi-
viduals worldwide and has the second highest global treat-
ment burden for illicit substances (United Nations Office 
on Drugs and Crime [UNODC], 2016). Over 28% of admis-
sions to treatment services for drug use problems are can-
nabis-specific (UNODC, 2016). Individuals with CD 
represent the most vulnerable of cannabis users and experi-
ence impaired mental health and well-being relative to rec-
reational cannabis users and non-using controls (Pol et al., 
2013). A key feature of dependence is compulsive drug use 
driven by negative reinforcement (i.e. negative emotions or 
distress when one cannot access drugs), despite the physi-
cal or psychological problems associated with maladaptive 
use patterns (e.g. neglect of obligations and impaired qual-
ity of life; American Psychiatric Association [APA], 2013). 
Drug dependence has been linked to neuroadaptations in 
neural circuits involved in reward, stress and motivation 
(Everitt and Robbins, 2016; Koob, 2009; Volkow et  al., 
2013). Neuroanatomical alterations of structures within 
these circuits (e.g. hippocampus, amygdala, striatum, and 
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cerebellum) have been found in neuroimaging studies of 
regular cannabis users (Lorenzetti et al., 2016). However, 
neuroimaging studies of regular cannabis users have not 
consistently differentiated cannabis users with and without 
dependence/problematic use. Rather, they have compared 
regular cannabis users poorly characterised for levels of 
dependence to non-cannabis using controls. It is unclear 
whether cannabis users with and without CD show disso-
ciable neural alterations as postulated by neuroscientific 
models of addiction (Everitt and Robbins, 2016; Koob, 
2009; Volkow et al., 2013).

To address this knowledge gap, we compared neuro-
anatomical features between cannabis users with high-
dependence (CD+), low-dependence (CD−) and controls. 
Specifically, we examined whether the volumes of brain 
regions that neuroscientific models of addiction implicate 
in reward, stress regulation, learning and memory, and 
emotion regulation differ between these groups. Regions 
included the amygdala, hippocampus, pituitary, nucleus 
accumbens (NAc), caudate, putamen, pallidum and the cer-
ebellum (total, grey matter [GM] and white matter [WM]). 
We hypothesised that CD+ relative to CD− and controls 
would show reduced medial temporal and cerebellar vol-
umes, and larger volumes of reward and stress regions (i.e. 
pituitary and striatal regions). We followed up hippocampal 
volume results with shape analyses to identify alterations 
specific to hippocampal subregions.

Methods

We recruited 45 regular cannabis users, which included 25 
CD+ and 20 CD− defined using the cut-off of the Severity 
of Dependence Scale (SDS) ⩾ 4 (Gossop et al., 1995). We 
also recruited 37 non-user controls. All participants had no 
recent or past medical or psychiatric conditions and had 
limited illicit substance use (apart from cannabis use in 
users). All assessments were conducted by trained research-
ers and student researchers. Global Assessment of 
Functioning scores were estimated as part of the Structured 
Clinical Interview for DSM-IV-TR (SCID) assessment 
(Bodlund et al., 1994). Intelligence quotient was assessed 
with the Wechsler Abbreviated Scale of Intelligence 
(Wechsler, 1999). Depressive, and positive and negative 
psychotic symptoms were measured using the Community 
Assessment of Psychic Experiences (CAPE; Konings et al., 
2006), and trait anxiety was assessed with the Spielberger 
State-Trait Anxiety Inventory (STAI; Spielberger, 2010). 
Past month alcohol dosage in standard drinks was estimated 
using the Timeline Followback procedure (Sobell and 
Sobell, 1992). Lifetime cannabis use was assessed with a 
detailed semi-structured interview used in previous works 
(Lorenzetti et al., 2015; Solowij et al., 2002, 2011a, 2011b; 
Takagi et al., 2011a, 2011b; Yücel et al., 2008). This pro-
vided information on cannabis use frequency (days/month), 
duration of regular cannabis use and lifetime cannabis 

dosage (daily dosage × smoking days/month × months of 
regular use). Lifetime cannabis dosage was standardised to 
cones via the following method – https://ncpic.org.au/
static/pdfs/assessment-tools/timeline-followback.pdf. CD 
severity scores were obtained using the SDS (Budney et al., 
1999).

MRI data acquisition

T1-weighted structural magnetic resonance (MR) images 
were acquired with a 3T Siemens TIM Trio scanner with a 
32-channel head coil. Images were acquired sagittally with a 
high-resolution imaging three-dimensional (3D) magnetiza-
tion-prepared rapid acquisition with gradient echo 
(MPRAGE) sequence (time to repetition [TR] = 1900 ms, 
time to echo [TE] = 2.15 ms, field of view [FOV] = 256 mm) 
and were resized to 1 mm3 isotropic voxels.

MRI data processing

Each amygdala, hippocampus and pituitary were manually 
delineated in the coronal plane where these regions are best 
visualised, using validated protocols. The same investiga-
tor (V.L.) performed all tracings while blind to group status 
and using Analyze 11.0 (AnalyzeDirect, Overland Park, 
KS). Volumetric estimates were obtained by summing all 
voxels within traced regions of interest on consecutive cor-
onal slices. For each region, inter- and intra-rater reliabili-
ties for manual tracings were computed using intraclass 
correlation coefficients (ICCs), absolute agreement based 
on 10 randomly selected images.

We defined the boundaries of the amygdala using the pro-
tocol developed by Velakoulis et al. (1999, 2006), with slight 
modifications based on Watson et al.’s (1992) protocol for 
defining the boundary between the amygdala and the hip-
pocampus. In addition, we considered the anterior boundary 
of the amygdala as either the slice posterior to where the 
optic chiasm joins or where the lateral sulcus closes to form 
the entorhinal sulcus, whichever was more posterior. ICCs 
for right and left amygdala volumes were 0.96 and 0.91, 
respectively, for intra-rater reliability, and 0.95 and 0.88, 
respectively, for inter-rater reliability, as compared with an 
experienced amygdala tracer (SLW).

The hippocampus was traced following reliable and vali-
dated protocols (Convit et  al., 1999; Cook et  al., 1992; 
Velakoulis et al., 2006). The hippocampal boundaries were 
as follows: posterior, the slice with the greatest length of 
continuous fornix; medial, the open end of the hippocampal 
fissure posteriorly, the uncal fissure in the hippocampal body 
and the medial aspect of the ambient gyrus anteriorly; lat-
eral, the temporal horn of the lateral ventricle; inferior, the 
WM inferior to the hippocampus; superior, the superior bor-
der of the hippocampus; and anterior, the alveus was used to 
differentiate the hippocampal head from the amygdala. The 
anterior border was the most difficult to identify consistently 

https://ncpic.org.au/static/pdfs/assessment-tools/timeline-followback.pdf
https://ncpic.org.au/static/pdfs/assessment-tools/timeline-followback.pdf
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and was aided by moving between slices before and after the 
index slice. ICC for right and left hippocampal volumes were 
0.95 and 0.93, respectively, for intra-rater reliability, and 
0.92 and 0.84, respectively, for inter-rater reliability, com-
pared to an experienced hippocampus tracer (SLW).

The pituitary gland was traced using a modified version 
(Pariante et  al., 2004) of a reliable and validated method 
(MacMaster et al., 2006; MacMaster and Kusumakar, 2004; 
Sassi et al., 2001). We excluded the infundibular stalk from 
the tracing, but included the hyper-intense region in the pos-
terior pituitary, which is thought to represent high levels of 
vasopressin concentrations (Garner et  al., 2005; Pariante 
et al., 2004; Sassi et al., 2001). The borders of the pituitary 
were clearly defined superiorly by the diaphragma sellae, 
inferiorly by the sphenoid sinus and bilaterally by the cav-
ernous sinuses (Garner et al., 2005; Pariante et al., 2004). 
ICCs for intra- and inter-rater reliabilities (compared to an 
experienced tracer, SLW) were 0.94 and 0.98, respectively.

Finally, the caudate, NAc, pallidum, putamen, cerebellar 
cortex and cerebellar GM and WM were automatedly 
extracted with FreeSurfer v.4.1.0 (http://surfer.nmr.mgh.
harvard.edu/). These regions were visually inspected in the 
coronal plane to confirm the validity of the allocated bound-
aries, and for outliers using scatter plots of their volumes, 
following standardised and publicly available protocols 
(http://enigma.ini.usc.edu/protocols/imaging-protocols/).

Statistical analyses

Chi-square tests were run to compare groups by sex distri-
bution. A series of analyses of variance (ANOVAs) were 
run to compare groups on demographics (i.e. age), global 
function, psychopathology symptom scores (e.g. CAPE 
depressive, positive and negative psychotic symptoms), 
STAI-Trait anxiety and substance use (e.g. alcohol standard 
drinks/month, cannabis smoking days/month, cumulative 
lifetime dosage in cones, duration of regular use and SDS 
severity of CD).

Separate analyses of covariance (ANCOVAs) were run 
for each brain region to assess for the main effect of CD, 
with hemisphere as repeated-measure (except pituitary), 
and group (i.e. controls, CD−, and CD+) and sex as 
between-subject factors. Of the possible covariates – age, 
intracranial volume (ICV), global functioning, level of 
alcohol use, and depressive and anxiety symptom scores, 
we kept those that were significant predictors in the mod-
els. We explored the role of dosage and dependence on 
brain volumes separately in CD+ and CD− using hierarchi-
cal linear regressions with ICV and sex included as block 
one predictors, and cumulative lifetime dosage in cones 
and SDS score as block two predictors.

An exploratory analysis of hippocampal shape was run, 
to compare subregional differences between groups. This 
analysis was motivated by the considerable evidence of 
hippocampal volume alteration (Lorenzetti et al., 2019) and 

emerging evidence of potential shape alteration associated 
with cannabis use (Chye et al., 2019; Solowij et al., 2013). 
We sought to verify previous hippocampal shape findings 
and extend upon these by examining CD-related associa-
tions. The manually traced hippocampi were transformed 
into a mesh output using the SPHARM shape analysis pipe-
line. Group differences were assessed, controlling for sex 
and ICV, using SPHARM-PDM (http://www.nitrc.org/pro-
jects/spharm-pdm). Use of the manually traced (i.e. the gold 
standard for brain analysis) hippocampal region affords us more 
confidence in the sensitivity of the delineated boundary shape.

Results

Sample characteristics and brain volumes are shown in Tables 
1 and 2, respectively. All groups were matched by age, sex 
and monthly standard drinks. The CD− group had lower 
global functioning than controls. The CD+ group had lower 
IQ than controls, and lower global functioning and higher 
trait anxiety than the CD− and control groups. The CD+ and 
CD− groups were matched on lifetime cannabis dosage in 
cones and years of regular cannabis use, but the CD+ group 
had higher smoking days/month and higher CD scores.

There was a significant main effect of group on the vol-
umes of cerebellar WM (p = 0.014, ηp

2 0 107= . ), hippocam-
pus (p < 0.001, ηp

2 0 23= . ) and the caudate (p = 0.049, 
ηp
2 0 077= . ), although the effect for the caudate did not sur-

vive false discovery rate (FDR) correction (critical 
value = 0.018). Cerebellar WM volumes were lower in 
CD+ than controls (p = 0.004) and were predicted by sever-
ity of CD (SDS scores, p = 0.019, right hemisphere); how-
ever, this latter effect did not survive FDR correction. 
Hippocampal volumes were smaller in CD+ compared to 
CD− (p = 0.020) and controls (p < 0.001). Caudate volumes 
were larger in CD+ compared to CD− (p = 0.019), although 
this effect did not survive FDR correction. No other signifi-
cant effects were found.

Exploratory shape analysis (i.e. group comparison 
between healthy controls [HC], CD+ and CD−, controlling 
for xyz) was conducted on the hippocampus, given the 
strength of hippocampal volumetric findings. The right hip-
pocampal head and tail shape was altered in CD+ com-
pared to controls (i.e. inward shape deformation; Figure 1). 
There were no other significant effects.

Discussion

In line with previous findings in regular cannabis users 
(Lorenzetti et al., 2016), we found that cannabis use was 
related to the structural integrity of the cerebellum, hip-
pocampus and caudate. However, we found that alterations 
in some structures were specific to those with more severe 
dependence. Specifically, we found that CD+ had lower 
cerebellar WM volumes, and deflation within the hip-
pocampus head and tail, relative to controls. CD+ had 

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://www.nitrc.org/projects/spharm-pdm
http://www.nitrc.org/projects/spharm-pdm
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lower hippocampal volumes relative to CD− and controls. 
In addition, CD+ had larger caudate volumes relative to 
CD− (Chye et al., 2017). No significant group differences 
emerged for the volumes of the amygdala, NAc, pallidum, 
putamen, pituitary and cerebellar cortex.

Volumetric alterations in individuals with high levels of 
CD may be specific to regions involved in substance 
dependence. The hippocampus and the cerebellum have 
been involved in the formation of drug-related and emo-
tional memories involved in craving and drug-taking 
(Everitt and Robbins, 2016; Koob, 2009; Volkow et  al., 
2013). The cerebellum has been implicated in aberrant 
reward processing and motivation in drug dependence 
(Casajuana et  al., 2016) and the hippocampus in altered 
stress, reward, and learning and memory in cannabis users. 
Volumetric reductions of the hippocampus are consistent 
with the results of a recent meta-analysis comparing brain 
volumes between cannabis users and controls (Lorenzetti 
et al., 2019). This meta-analysis did not segregate depend-
ent and non-dependent cannabis users as this information 

was lacking in most studies (Lorenzetti et al., 2019). The 
meta-analysed samples of regular cannabis users may have 
comprised both dependent and non-dependent cannabis 
users (Budney et al., 2019), and it is possible that depend-
ent cannabis users may have driven the observed hip-
pocampal volume reduction.

Alteration of cerebellar neuroanatomy has been reported in 
several structural neuroimaging studies of regular cannabis 
users (Blithikioti et  al., 2019; Solowij et al., 2011b). It is 
unclear whether specific cerebellar regions are vulnerable to 
cannabis use and dependence. The literature to date has exam-
ined heterogeneous cerebellar regions (e.g. total volume, ver-
mis, grey and/or WM, and distinct lobules) and has relied on 
distinct methods to parcellate the cerebellum in different por-
tions. Also, knowledge of the role of the cerebellum in addic-
tion and other psychopathology is limited as its inferior portion 
is commonly cut off or ‘sacrificed’ in MRI acquisition 
sequences, to include higher order cortical regions.

CD+ had larger caudate volumes than CD−. The caudate 
is part of the corticostriatal circuit implicated in addiction 

Table 1.  Sample characteristics of non-cannabis using controls, low-dependence cannabis users (CD−) and high-dependence 
cannabis users (CD+), presented as mean (SD).

Controls CD− CD+ p-value post hoc

Total N (females) 37 (19) 20 (10) 25 (13) 0.99 –

Age (years) 29.95 (11.29) 36.25 (11.75) 31.28 (10.44) 0.13 –

WASI-IQ 112.32 (12.72) 106.35 (11.43) 100.52 (11.67) 0.001** Controls > CD+, p < 0.001***

GAF 86.30 (4.33) 77.85 (9.64) 72.44 (10.03) < 0.001*** Controls > CD−, p < 0.001***
Controls > CD+, p < 0.001***
CD− > CD+, p = 0.024*

CAPE depressive 
symptoms

12.11 (2.87) 13.05 (2.44) 15.40 (3.86) 0.001** Controls < CD+, p < 0.001*** 
CD− < CD+, p = 0.014*

CAPE positive symptoms 24.20 (2.61) 27.45 (6.79) 26.96 (5.12) 0.024* Controls < CD−, p < 0.017* 
Controls > CD+, p < 0.031*

CAPE negative symptoms 21.97 (5.51) 21.75 (3.93) 27.64 (6.81) <.001*** Controls < CD+, p < 0.001*** 
CD−< CD+, p = 0.001**

STAI-T 33.73 (7.59) 31.20 (12.13) 44.24 (13.67) < 0.001*** Controls < CD+, p < 0.001***
CD− < CD+, p < 0.001***

Alcohol (StDr/mth) 19.79 (26.72) 21.03 (27.32) 26.11 (29.12) 0.67 –

Cannabis use

  Frequency (days/month) – 21.15 (10.50) 26.64 (5.35) 0.03* –

  Lifetime dosage (conesa) – 68,251 (60,998) 83,377 (98,002) 0.55 –

  Duration of use (years) – 17.35 (10.36) 14.64 (9.59) 0.37 –

  Dependence (SDS) – 1.45 (0.89) 7.64 (3.25) < 0.001*** –

WASI: Wechsler Abbreviated Scale of Intelligence; GAF: Global Assessment of Functioning scale; CAPE: Community Assessment of Psychic Experiences; 
STAI-T: State-Trait Anxiety Inventory – Trait anxiety; StDr/mth: number of standard drinks per month; SDS: Severity of Dependence Scale.
aCones: unit of measurement of cannabis dosage as per timeline followback (https://ncpic.org.au/static/pdfs/ assessment-tools/timeline-followback.pdf).
*p < 0.05; **p < 0.01; ***p < 0.001.

https://ncpic.org.au/static/pdfs/ assessment-tools/timeline-followback.pdf
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models of maladaptive reward-learning and behaviour 
(Volkow et al., 2013). Our finding suggests that CD severity 
affects caudate volume, as recently reported (Chye et  al., 
2017), and adds to a body of inconclusive work on drug-
related alteration in this area. Caudate volumes were not 
significantly different in a recent meta-analysis that com-
pared brain volumes in regular cannabis users and controls 

(Lorenzetti et al., 2019). The volume of the caudate may be 
affected in dependent users specifically (i.e. not in recrea-
tional non-problem users), and this alteration may be con-
flated because the cannabis using samples examined to date 
included both people with and without CD.

The impact of CD on neuroanatomy may be regionally 
specific and driven by distinct mechanisms. Effect sizes 

Table 2.  Subcortical volumes in non-cannabis using controls, low-dependence cannabis users (CD−) and high-dependence cannabis 
users (CD+), presented as mean (SD).

Controls
N = 37

CD−
N = 20

CD+
N = 25 Group effect

Controls 
vs CD−

Controls vs 
CD+

CD− vs 
CD+

  F73,2 p-value p-value p-value p-value

Amygdala Left 1534.92 
(262.37)

1458.84a 
(203.48)

1445.20 
(262.42)

0.15 0.86 – – –

  Right 1680.27 
(307.48)

1514.16a 
(194.77)

1555.36 
(303.67)

 

Caudate Left 3616.38 
(445.57)

3401.85 
(470.74)

3762.84 
(527.12)

3.14 0.049* 0.37 0.069 0.019*

  Right 3575.08 
(471.09)

3299.25 
(543.56)

3716.60 
(562.57)

 

Hippocampus Left 2536.00 
(352.54)

2439.70 
(310.38)

2313.60 
(307.93)

11.05 < 0.001*** 0.082 < 0.001*** 0.020*

  Right 2851.97 
(353.11)

2591.60 
(350.44)

2469.96 
(341.21)

 

NAc Left 463.57 
(109.13)

481.05 
(144.61)

480.88 
(118.33)

0.83 0.44 – – –

  Right 552.27 
(83.45)

535.40 
(94.93)

578.12 
(97.99)

 

Pallidum Left 1808.73 
(260.72)

1714.75 
(273.61)

1762.08 
(204.90)

0.20 0.82 – – –

  Right 1644.95 
(241.26)

1615.65 
(251.78)

1657.20 
(232.43)

 

Putamen Left 5675.56b 
(737.79)

5456.35 
(571.74)

5746.67c 
(609.06)

0.20 0.82 – – –

  Right 5329.25b 
(598.12)

5152.70 
(458.69)

5390.67c 
(655.83)

 

Pituitary 571.35 
(114.36)

530.75 
(99.08)

603.28 
(109.86)

2.77 0.069 – – –

Cerebellar 
GM

Left 61,121.89 
(7066.92)

58,752.20 
(5410.78)

59,729.70 
(6808.16)

1.78 0.18 – – –

  Right 62,132.52 
(7273.77)

61,676.75 
(7400.55)

61,003.84 
(5489.82)

 

Cerebellar 
WM

Left 17,491.51 
(2944.87)

17,050.75 
(2796.21)

16,218.24 
(2462.17)

4.50 0.014* 0.49 0.004** 0.063

  Right 17,642.70 
(2567.07)

15,929.76 
(2420.97)

16,533.40 
(2333.73)

 

NAc: nucleus accumbens; GM: grey matter; WM: white matter.
a(n = 19); b(n = 36); c(n = 24).
*p < 0.05; **p < 0.01; ***p < 0.001.
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and FDR correction showed that group differences in cau-
date volumes were less marked than those in the hippocam-
pus and cerebellum. The hippocampus and cerebellum 
have a higher concentration of cannabinoid receptors than 
the caudate (Glass et al., 1997) and may be more vulnerable 
to the effects of tetrahydrocannabinol (THC), the key can-
nabinoid compound which determines cannabis potency 
and addiction liability. In contrast, alterations of the cau-
date may reflect a neuroadaptation resulting from habitual 
substance use (Schwabe and Wolf, 2011) as observed in 
samples dependent on substances other than cannabis, such 
as cocaine (Pierce and Vanderschuren, 2010), alcohol 
(Sjoerds et al., 2013) and gaming (Ko et al., 2009).

The CD-specific effects that we report here add to 
emerging evidence that dependence drives brain structural 
and functional differences in regular cannabis users (Chye 
et al., 2017; Filbey and Dunlop, 2014). Previous work has 
emphasised a lack of dose-dependent relationships in brain 
areas that differ between cannabis users and non-users, 

pointing towards a need to carefully re-evaluate the role of 
dosage versus dependence in the neuroalterations reported 
in cannabis users. Alteration of striatal dopaminergic path-
ways (Bloomfield et al. 2016; van de Giessen et al. 2017), 
which have been associated with dependence severity 
(Volkow et  al., 2013), may underlie the neuroanatomical 
differences between cannabis users and controls (Woodward 
et al. 2009). However, to our knowledge, no study has spe-
cifically examined the association between CD, dopamin-
ergic function and striatal (including caudate) volume.

Our sample did not show volumetric alterations of sev-
eral brain regions (e.g. amygdala, ventral striatum) impli-
cated in neuroscientific theories of addiction (Casajuana 
et  al., 2016; Everitt and Robbins, 2016; Koob, 2009; 
Volkow et al., 2013). As these theories rely mostly on pre-
clinical studies of substance use and on drugs other than 
cannabis (e.g. alcohol), our results suggest that exposure to 
cannabis versus other substances implicates partially dis-
tinct neural pathways. This notion needs validation in larger 

Figure 1.  Significance map of shape analysis showing comparison in right and left hippocampus (superior and inferior view) 
between healthy controls (HC) versus low-dependence cannabis users (CD−), HC versus high-dependence cannabis users 
(CD+) and CD− versus CD+, including raw and false discovery rate (FDR)-corrected group differences, and their visual 
representation using heat maps plotted into deformable models of hippocampal surface (signed difference).



Lorenzetti et al.	 7

Australian & New Zealand Journal of Psychiatry, 00(0)

samples and systematic comparison between users of can-
nabis and other substances.

Our findings warrant examination of CD – rather than 
dosage/frequency/age of onset alone – in future studies of 
cannabis users. The previously reported hippocampal and 
cerebellar volume alterations in samples of recreational/
regular cannabis users (not segregated by dependence 
level) may be driven by a subgroup of more severely 
dependent users. Notably, CD+ in this study smoked can-
nabis more frequently (5 days/month on average or more) 
than CD−, but otherwise the groups did not differ on dura-
tion of cannabis use or cumulative lifetime dosage (see 
Table 1). Lifetime dosage encapsulated frequency of use 
(calculated as cannabis quantity used/month × number of 
smoking days/month × years of use), and yet was not a 
significant predictor of brain volumes in regression 
analyses.

This study is limited by the lack of a rigorous diagnostic 
assessment of cannabis use disorder (CUD; Diagnostic 
and Statistical Manual of Mental Disorders [5th ed.; DSM-
5]; APA, 2013). Replication is warranted in larger samples 
with varying levels of CUD severity (i.e. mild, moderate 
and severe) and sensitive measures of cannabis dosage, 
frequency, duration, onset and dependence. Another limi-
tation is that our exploratory shape analyses were not per-
formed for brain regions other than the hippocampus (e.g. 
cerebellum, caudate). The hippocampus is most often 
implicated in cannabis use–related neuroalterations (both 
volume and shape), where studies have shown consistently 
stronger effect size in comparison with other structures 
(Lorenzetti et al., 2019). As such, the shape analysis in this 
paper allowed us to extend hippocampal findings to under-
stand surface-related differences associated with CD. 
Finally, we did not assess the neural effects of distinct can-
nabinoid compounds with neuroprotective and neurotoxic 
properties (e.g. THC and cannabidiol), motivation for 
using cannabis and self-medication, and perceived benefi-
cial effects from using. These factors are largely unex-
plored and should be assessed in future work to inform a 
detailed understanding of the neural correlates of cannabis 
use and policies on the decriminalisation of cannabis 
products.

Our findings indicate that CD is related to volumetric 
alterations in specific brain regions, including the hip-
pocampus and the cerebellum (where group differences had 
the strongest effect sizes) and the caudate. This work com-
plements emerging structural neuroimaging findings show-
ing that the structure of other cortical brain regions (i.e. 
orbitofrontal cortex) is associated with CD, rather than rec-
reational non-dependent use (Chye et  al., 2017). Future 
work will be necessary to verify whether alterations in 
reward, stress and addiction-relevant brain circuits are 
associated more with dependence on cannabis (i.e. depend-
ence-related effects) than regular non-problem cannabis 
use per se (e.g. effects due to exposure to cannabinoids), 

and how CD-related alterations may differ from those of 
dependence on other drugs.
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