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Cannabinoid CB1 and CB2 Receptor Signaling and Bias
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Abstract
An agonist that acts through a single receptor can activate numerous signaling pathways. Recent studies have
suggested that different ligands can differentially activate these pathways by stabilizing a limited range of recep-
tor conformations, which in turn preferentially drive different downstream signaling cascades. This concept,
termed ‘‘biased signaling’’ represents an exciting therapeutic opportunity to target specific pathways that elicit
only desired effects, while avoiding undesired effects mediated by different signaling cascades. The cannabinoid
receptors CB1 and CB2 each activate multiple pathways, and evidence is emerging for bias within these path-
ways. This review will summarize the current evidence for biased signaling through cannabinoid receptor sub-
types CB1 and CB2.
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Introduction
Identifying and characterizing the molecular deter-
minants of agonist efficacy in signaling pathway acti-
vation are a vital requisite of contemporary drug
design. One of the determinants of agonist efficacy
is the molecular structure of the agonist, and thus
the receptor conformation that it induces. However,
receptor conformation is also affected by interactions
with various intracellular signaling proteins.1–3 For
example, the conformation of the b2 adrenergic re-
ceptor has been demonstrated to be quite distinct in
the presence of the second messenger protein Gs.

2,3

Receptor activation will therefore be both ligand and
tissue specific, as the assortment and abundance of in-
tracellular signaling constituents vary between cell
types. Biased signaling is the concept that different li-
gands acting on the same G protein-coupled receptor
(GPCR), in the same tissue, can give rise to mark-
edly different cellular responses (Fig. 1), and this is
likely due to each ligand stabilizing different receptor
conformations. This concept has been given many

different names—‘‘stimulus trafficking,’’ ‘‘functional
selectivity,’’ and more recently, ‘‘agonist bias’’ or
‘‘biased signaling.’’ It is important to note that differ-
ential signaling pathway activation by different ago-
nists can probably also arise as a consequence of
kinetics; if there are significant differences in agonist
binding kinetics, the more slowly dissociating ligands
may allow receptor conformations that favor low-
affinity interactions for a particular receptor/signaling
molecule pair to persist long enough for productive
coupling.

Traditional approaches to demonstrating bias
have focused on comparisons of EC50 or Emax values
within different pathways, but such methods may not
account for inherent differences between pathway stoi-
chiometry. For example, some pathways may achieve
maximum response at lower receptor occupancy,
resulting in higher potency for all agonists within this
pathway (pathway bias). Quantifying biased signaling
involves determining the effects of two or more ago-
nists on two or more cellular responses, and comparing
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the agonist profiles for each pathway. More recently,
the operational model of bias has been utilized4; this
approach compares all ligands within each pathway
against a reference ligand and then makes comparisons
of the relative shifts between pathways relative to the
reference.

Therapeutically, it is hoped that the study of biased
signaling of GPCR-directed therapeutics will enable
engagement of desired pathways over those not in-
volved in the therapeutic effect. Ideally, this would
eliminate on-target but unwanted or adverse effects;
agonists or allosteric modulators that induce signaling
in a biased manner could potentially revolutionize fu-
ture therapeutic drugs. The l-opioid receptor presents
a prime example where biased signaling might be
exploited at the translational level. Although opioid re-
ceptors are useful targets of analgesics, l-opioid recep-
tor activation also causes respiratory depression, which

is suggested to be a product of b-arrestin2 recruit-
ment.5 Hence, the development of an agonist that pre-
serves the analgesic (G protein-mediated) properties of
activated l-opioid receptors without any respiratory
side effects would be beneficial to avoid adverse effects,
and such compounds have recently been developed in
light of this hypothesis.6,7

The cannabinoid receptor family consists of two
GPCRs, cannabinoid receptor 1 (CB1) and cannabinoid
receptor 2 (CB2), and they will be the focus of this re-
view. CB1 plays a role in regulating neurotransmission
in many brain regions. When activated, CB2 regulates
immune responses and inflammatory pathways. Mice
lacking CB2 often demonstrate an exacerbated inflam-
matory phenotype8 and besides roles in the periphery
expression in brain microglia suggest a role for CB2

in neuroinflammation.9,10 Recently, CB2 has been sug-
gested to contribute to neuronal plasticity in mouse

FIG. 1. Biased agonist 1 or 2 binds to the seven-transmembrane cannabinoid receptor 1. Structurally
different ligands will induce diverse conformations of the receptor, which may then favor one of the possible
signaling pathways over others. In this diagram, agonist 1 is biased toward the activation of the Gai/o

heterotrimer over b-arrestin-1, while agonist 2 favorably activates b-arrestin-1. Activation of Gai/o prompts
the release of the Gbc subunit, which inhibits voltage-dependent calcium channels (ICa) and activates
GIRK. The Gai/o subunit inhibits AC, which stimulates the phosphorylation and early activation of ERK1/2.
The activation of b-arrestin-1 conversely induces late activation of ERK1/2. AC, adenylyl cyclase; ERK1/2,
extracellular signal-regulated kinase 1 or 2; GIRK, G protein-gated inwardly rectifying potassium channels.
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hippocampal neurons11 potentially expanding the role
of this receptor in the brain. The endogenous lipids
anandamide and 2-arachidonoylglycerol (2-AG) are
the physiological cannabinoid receptor agonists and
are hence known as endocannabinoids.12–14 A great
deal of interest has centered on the potential role of
CB1 in targeting a range of central nervous system
(CNS) disorders such as pain,15 anxiety,16 multiple
sclerosis,17 obesity,18 nicotine addiction,19 Huntington
disease,20 and Parkinson’s disease.21 In more recent
times CB2 has also become a focus in peripheral in-
flammatory disorders such as nephrotoxicity.8,22

In addition to the two well-established cannabinoid
receptors, several other GPCRs have been reported to
be activated by cannabinoid drugs or endocannabinoids
and related molecules, including GPR55,23 GPR18,24

and GPR119.25 Furthermore, endogenous and syn-
thetic cannabinoids can activate and potentiate tran-
sient receptor potential (TRP) channels26 and glycine
receptors,27 respectively. The potential contribution
of these receptors to the therapeutic effects of cannabi-
noids or the physiological effects of endocannabinoids
are only beginning to be explored, and much less is
known about how ligands regulate their signaling.

The widespread distribution of CB1 in the CNS pro-
vides a strong rationale for developing ligands with bi-
ased profiles to potentially avoid the consequences of
activating multiple signaling pathways in many differ-
ent brain regions. Biased ligands could also potentially
have context-dependent effects, providing effective
modulation of pathways dysregulated by disease in
restricted subsets of neurons. Modulating selected
downstream pathways would result in a more targeted
pharmacological response, but considerable research is
still required to understand which of the characterized
pathways are therapeutically desirable, and under
which disease condition.

Signaling of Cannabinoid Receptors
G protein coupling of cannabinoid receptors
First cloned in the early 1990s,28,29 both CB1 and CB2

were initially described as exhibiting pertussis toxin-
sensitive signaling through Gai/o-type G proteins,30

however, differences in signaling were reported from
the outset. When expressed in AtT-20 cells, CB1 medi-
ated an inhibition of P/Q-type calcium channels and an
activation of G protein-gated inwardly rectifying potas-
sium channels (GIRKs) in addition to inhibition of
adenylyl cyclase.30 By contrast, CB2 was not reported
to modulate the activity of either channel in AtT-20

cells but did inhibit adenylyl cyclase.30 This poor cou-
pling may be an example of functional selectivity as it
was recently found that mouse CB2 (mCB2) can inhibit
voltage-gated calcium channels, in a manner strongly
dependent on the CB2 ligand used, with CP55,940,
but not WIN55,212-2, able to inhibit the channels via
a Gbc pathway.31 It is unclear how far this apparent bi-
ased signaling extends, however, as both WIN55,212-2
and CP55,940 hyperpolarize AtT-20 cells expressing
human CB2 (hCB2), and this response almost certainly
reflects Gbc subunit-mediated activation of GIRKs.32

In studies using purified G proteins, Glass and
Northup33 demonstrated that while CB1 and CB2 had
similar affinity for Gai-type G proteins, CB2 had signif-
icantly lower affinity for Gao than Gai. CB1 is promis-
cuous in its G protein coupling, with activation of
Gas- and Gaq-dependent signaling under some condi-
tions, or in some cells. Gas-like coupling has been sug-
gested under circumstances where Gai activation is
limited, such as following pertussis toxin treatment,
or simultaneous activation of CB1 with other Gai linked
receptors such as D234–36; indeed it appears that in
some cell types the Gas linkage is dominant.37,38 Stud-
ies have suggested that the second intracellular loop of
CB1 mediates both Gas and Gai coupling specificity,39

but a detailed understanding of what regulates the spe-
cific G protein coupling is still lacking. Gaq coupling of
CB1 has been suggested for only a few ligands40 and
will be discussed in more detail below. Finally, in vivo
studies have also suggested coupling of CB1 to the
Gai/o-related G protein Gaz.

41 The ability to activate
such a diverse range of G proteins strongly suggests
that biased signaling between different G protein path-
ways could be achieved, and examples of this are
emerging and described below. Apart from the interac-
tions with Gai and Gao less is known about additional
G proteins interacting with CB2.

The consequences of activating Gai, Gao, Gas, and
Gaq heterotrimers have been described for many
GPCRs, and this signaling seems similar for the most
part for CB1 and CB2. Gai/o subunits inhibit adenylyl
cyclase or couple to the mitogen-activated protein
kinase (MAPK) pathway. Gas stimulates adenylyl
cyclase (and subsequent phosphorylation of cAMP
response element-binding protein [CREB]). Gaq cou-
ples to phospholipase C and promotes release of intra-
cellular calcium ([Ca]i). Gbc subunits derived from
Gai/o activate GIRKs (comprising KIR 3.X heteromers),
activate phosphatidylinositide-3-kinase, and inhibit
voltage-dependent calcium channels (ICa).42–44
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Originally described as ‘‘G protein-coupled’’ proteins
based on their modulation of classical signaling path-
ways via heterotrimeric G proteins, GPCRs also recruit
other proteins for signaling, most prominently b-
arrestin-1 and -2. Arrestins serve multiple functions
as regulators of G protein coupling and receptor local-
ization, and are essential elements of multiple GPCR
signaling cascades involving kinases, phosphatases,
and ubiquitin ligases.45 Arrestin signaling has been
generally thought to occur in the absence of bound G
protein, and although this has been recently chal-
lenged,46 arrestin-mediated signaling is likely to be me-
diated by a different ligand/receptor conformation
from those involved in Ga interactions.

Activation of MAPK cascades
MAPK family members have been found to regulate di-
verse biological functions by phosphorylation of spe-
cific target molecules (such as transcription factors)
and thereby participate in the regulation of a variety
of cellular processes, including cell proliferation, differ-
entiation, and apoptosis.47

As for most GPCRs, there are multiple pathways by
which CB1 activation can lead to phosphorylation of ex-
tracellular signal-regulated kinase 1 or 2 (ERK1/2). In
Chinese hamster ovary (CHO), U373 MG, and PC-3
cells, phosphatidylinositide 3-kinase activation is re-
quired for CB1 activation of ERK1/2, and the Gbc sub-
unit, rather than Ga, may transduce the CB1 signal.48,49

In contrast to this, ERK1/2 activation in N1E-115 mouse
neuroblastoma cells, or mouse hippocampal slices, is
reported to be downstream of inhibition of cyclic aden-
osine monophosphate (cAMP)/protein kinase A.50,51

CB1 may also transactivate members of the receptor
tyrosine kinase family leading to subsequent activation
of ERK1/2. Several tyrosine kinase receptors have been
implicated in this pathway, including the vascular en-
dothelial growth factor receptor52 and epidermal
growth factor receptor.53 The Src-family kinase, Fyn,
is also likely to be involved in the activation of ERK1/
2 by the CB1-transactivated tyrosine kinase receptors,
as Fyn knockout (KO) mice show no elevation of phos-
phorylated ERK1/2 (pERK1/2) in response to cannabi-
noid administration.51

Regardless of the precise pathway mediating pERK1/
2 downstream of CB1 activation, all of the above studies
found the activation to be downstream of Gai/o protein
signaling (and therefore pertussis toxin sensitive), how-
ever, pertussis toxin-insensitive ERK1/2 activation has
also been demonstrated in rat CB (rCB1)-transfected

human embryonic kidney 293 (HEK293) cells.54 The
Gai/o protein-independent pERK1/2 activation might
arise from the recruitment of b-arrestin-1 as mutation
of phosphorylation sites in the CB1 C-terminal (S426A/
S430A) has been suggested to result in b-arrestin-1-
mediated pERK activation,55 which in general occurs
later than the G protein-mediated activation.56 Similarly,
as discussed below, ORG27569, an allosteric modulator
of CB1, has been suggested by some studies57,58 but not
others59,60 to activate b-arrestin-1-mediated pERK1/2
signaling through CB1.

Activation of other MAPKs downstream of CB1 has
been reported, although there is considerable diver-
gence between tissues and ligands used among the stud-
ies, which makes reconciling contrasting results difficult.
In rat hippocampal slices, anandamide, CP55,940,
WIN55,212-2, and D9-tetrahydrocannabinol (THC) ac-
tivate p38 MAPK, but not c-Jun N-terminal kinase
( JNK).61 In cultured cortical neurons, JNK was activated
when stimulating with THC in a pertussis toxin-
sensitive manner,62 however, HU-210 failed to stimulate
ERK1/2, p38 MAPK, or JNK in a subsequent study on
cultured hippocampal neurons.63 In Neuro-2a cells en-
dogenously expressing mCB1, HU-210 activated only
ERK1/2, but not JNK or p38 MAPK pathways,64 al-
though a different study found that HU-210 stimulated
JNK activation in these cells.65 Rueda et al.66 showed
that THC-mediated activation of JNK was dependent
on Gai/o proteins, phosphatidylinositide 3-kinase, and
Ras, and involved platelet-derived growth factor (PDGF)
receptor transactivation in CHO cells. In contrast, in the
same cells, THC activation of p38 MAPK was not depen-
dent on PDGF receptor activation,66 suggesting the possi-
bility of multiple CB1-stimulated pathways for kinase
activation in the same cells.

There are relatively few studies on CB2 activation of
MAPK pathways. While several studies have investi-
gated the ability of cannabinoid agonists to modulate
ERK1/2 activation in response to inflammatory stimu-
li,67,68 only one study has examined the pathway by
which CB2 may link to ERK activation. In this study,
hCB2 coupling to ERK1/2 was shown to be pertussis
toxin sensitive but independent of cAMP.69 Some of
the variability observed in the pathways activating ki-
nases downstream of both CB1 and CB2 may reflect dif-
ferent levels of receptor expression between cells as
previous studies have demonstrated that the ability to
activate some kinases (most notably pAkt) required
high receptor expression, whereas ERK1/2 activation
occurred at all levels of expression.70

Ibsen, et al.; Cannabis and Cannabinoid Research 2017, 2.1
http://online.liebertpub.com/doi/10.1089/can.2016.0037

51



Desensitization, arrestin recruitment, and signaling
A common pathway for uncoupling GPCRs from G
protein-dependent signaling is receptor phosphoryla-
tion followed by binding of an arrestin.71 In this se-
quence of events, G protein receptor kinases (GRKs)
have a prominent role phosphorylating the GPCR
after agonist binding, and this phosphorylation in-
creases the affinity of arrestin for the receptor. Arrestin
binds to domains of the receptor thought to interact
with G proteins, preventing receptor activation of
these effectors. It is also possible that phosphorylation
of a receptor before arrestin binding disrupts receptor/
G protein interactions. The ultimate consequences of
arrestin binding are complex; for many receptors,
arrestin binding is a step in a pathway that leads to re-
moval of the receptor from the plasma membrane,
however, arrestin also acts as a scaffolding molecule
for non-G protein-mediated signaling pathways such
as activation of ERK.

In a classic series of studies, Howlett et al. delineated
CB1-mediated inhibition of agonist-stimulated adenylyl
cyclase activity in N18TG2 cells.72 This work included
showing that desacetyllevonantradol (CP54,939) inhibi-
tion of adenylyl cyclase maximally desensitized within
30 min of drug exposure.72 The desensitization of CB1

responses was homologous, as it did not affect the mus-
carinic receptor-mediated inhibition of adenylyl cyclase
and did not affect the maximum accumulation of
cAMP produced by the stimulatory agonist, secretin.73

THC also produced desensitization in this assay, but
it was slower and less complete than that produced
by CP54,939. Similar effects of CP55,940 on hCB1

expressed in CHO cells indicate that rapid desensitiza-
tion of CB1 coupling to adenylyl cyclase is common.74

While these assays provide a good indication that re-
ceptor desensitization is rapid, interpretation of the
quantitative elements of the studies is difficult as the
assays utilized 20 min or more of agonist exposure to
define control responses, and this period almost cer-
tainly encompasses many significant regulatory events.

By contrast to traditional single-point assays of
cAMP accumulation or ERK phosphorylation, GPCR
modulation of ion channels provides a continuous
and relatively direct readout of receptor activity, partic-
ularly when Gbc inhibition of ICa or activation of GIRK
is measured.75 Unfortunately, there are very few cell
lines where native CB1 receptors coexist with voltage-
gated ICa or GIRK. NG-108-15 and N18 cells, with
endogenous CB1, were used for the very earliest de-
scriptions of CB1 receptor inhibition of ICa,

76–78 however,

receptor regulation was not examined. Recombinant CB1

receptors expressed in murine AtT-20 cells couple to both
inhibition of ICa and activation of GIRK,79 and desensiti-
zation of GIRK activation has been reported.80 AtT-20
cells and Xenopus oocytes have been used to provide
some insight into CB1 regulation of ion channels.80,81

In oocytes, desensitization of rCB1-mediated activation
of GIRK was shown to be stimulated by coexpression
of both GRK3 and b-arrestin-2, but not affected by either
protein alone.80 The efficiency of other members of the
GRK family, or of b-arrestin-1, was not addressed in
the oocyte studies, nor were the effects of coexpression
of these molecules on basal coupling of CB1 to GIRK.

Mutation of two of six available serine/threonine res-
idues in the C-terminal tail (S426/S430) of rCB1 was
sufficient to block GRK3/b-arrestin-2-mediated desen-
sitization of coupling to GIRK in oocytes.80 When CB1

missing the last 55 intracellular residues was expressed
in AtT-20 cells, WIN55,212-2 desensitization was
abolished suggesting a role for the putative GRK
phosphorylation sites contained in the missing domain
in desensitization. Unfortunately, coupling of the
S426A/S430A mutant to native GIRK in AtT-20 cells
was not measured, and the role of GRK3 (or other
GRK family members) in regulation of CB1 in these
cells has not been directly addressed.

Direct recruitment of b-arrestin-2 to activated CB1

has also been demonstrated in both AtT20 and
HEK293 cells.54,82 In a detailed study of C-terminal
mutants, Daigle et al.82 found that all internalization-
competent CB1 mutants could recruit b-arrestin-2, al-
though some mutants appeared to recruit b-arrestin-2
at a reduced rate, while mutation of all six serine/
threonine residues in the rCB1 C-terminus (460–473)
prevented internalization and also failed to recruit
b-arrestin-2. A recent detailed bioluminescence reso-
nance energy transfer (BRET)-based study of CB1

arrestin interactions, suggested a low-affinity, transient
interaction between CB1 and b-arrestin-2, with no in-
teraction in late endosomes consistent with a family-
A interaction, while recruitment of b-arrestin-1 by
orthosteric ligands was not observed.83 Structural stud-
ies have suggested an interaction between b-arrestin-1
with a synthesized CB1 C-terminus,84,85 and this has
recently been observed in a whole cell.86

b-arrestin-2 KO mice revealed a role of arrestin in
CB1-mediated signaling. THC produced both greater
antinociception and greater decreases in body temper-
ature in b-arrestin-2 KO mice compared with wild-type
mice, consistent with a role for arrestins in blunting
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receptor signaling, however, the action of a range of
synthetic ligands was normal.87 Tolerance to THC anti-
nociceptive effects was also reduced in KO mice and
decreased downregulation of CB1 was observed.88

These studies could suggest substantial agonist differ-
ences in arrestin recruitment for different assays,
which requires further study. Alternatively, as THC is
a partial agonist at CB1, it may be more sensitive to sub-
tle changes in receptor availability as presumably it re-
quires full occupancy to exert maximum effect. Finally,
as with all studies of global KO animals, it is possible
that the signaling of many GPCRs in the circuits that
mediate cannabinoid effects is altered, and has been
since the start of the animals’ life. Single-cell studies ex-
amining CB1 receptor function and regulation have not
be done using cells from arrestin KO animals. Studies
on Gai/o-coupled l-opioid receptors in single neurons
from KO animals show that there is not always a
clear correlation between changes in agonist actions
at these neurons and with changes in behavior.89,90

Surprisingly, there has been little detailed study of
CB2-mediated arrestin recruitment. McGuinness
et al.91 and Dhopeshwarkar and Mackie92 utilized the
PathHunter DiscoveRx assay to investigate the ability
of a range of cannabinoid ligands to recruit b-arrestin-
2 at hCB2 and mCB2, respectively. This assay utilizes
enzyme complementation to detect recruitment of
tagged arrestin to the receptor. McGuinness et al. ob-
served robust and potent recruitment of arrestin to a
range of cannabinoid ligands, including CP55,940,
JWH015, and WIN55,212-2.91 Dhopeshwarkar and
Mackie found that nonclassic ligands (CP55,940)
recruited arrestin, whereas classic cannabinoid ligands
(THC, JWH133, KM233, etc.) did not, suggesting a
strong functional bias with structure.92 Recently, Soe-
thoudt et al.32 also investigated the ability of a wide
range of ligands to activate arrestin utilizing this
assay and found that all ligands modulated arrestin re-
cruitment to some extent. CP55,940 was the most po-
tent ligand in this assay, followed by WIN55,212-2.
Only CP55,940 acted as full agonist, while WIN55,212-
2, JWH133, JWH015, HU-308, HU-910 were partial
(Emax 50–70%) and the endocannabinoids (Emax 40–
80%) only partially recruited arrestin.32 Interestingly,
JWH133, HU-308, and HU-910 were all significantly
less potent on mCB2 than hCB2 in arrestin recruitment,
strongly suggesting species differences. A potential con-
founding issue with all these assays is the protein mod-
ules added to the receptor and arrestin constructs to
enable visualization of the interactions using optical

techniques. The signaling capacity of these constructs
is not usually assessed, and so it is not obvious that the
conformational changes being reported faithfully reflect
those of the native receptor and effector. In summary,
while there is some evidence to suggest that arrestin-
biased signaling is observed between cannabinoid li-
gands, the current lack of consistency between studies
needs to be resolved to enable the design of genuinely bi-
ased ligands.

Post-endocytic regulation of cannabinoid receptors
CB1 undergoes rapid internalization following agonist
stimulation.93,94 While early studies suggested that
CB1 may recycle following internalization,94,95 subse-
quent detailed studies have suggested that the internal-
ized receptor enters degradative pathways96 and is
rapidly degraded, with resensitization requiring the de-
livery of newly synthesized receptors.93

Internalization of CB1 has generally been shown to
be clathrin mediated,94,97 although in some systems,
caveolae-mediated internalization has been observed.97

Mutation of a highly conserved aspartate residue in the
second intracellular loop (D164 in rCB1) resulted in a
loss of CB1 internalization in AtT20 cells.81 Intrigu-
ingly, receptors with this mutation demonstrated pre-
served binding, cAMP inhibition, and inhibition of
Ca2 + currents but did not activate GIRK.81 This muta-
tion has also been suggested to decrease the constitutive
activity of CB1.98 Further studies identified the extreme
carboxy-terminal tail of the rCB1 as a central mediator
of agonist-induced internalization of the receptor in
AtT20 cells.94 Subsequently, truncation of this region
was also shown to prevent arrestin recruitment to
CB1 in AtT20 cells.82 However, the truncated receptor
internalized normally when expressed in HEK293
cells.82 Mutation of all of the serine/threonine residues
in this region resulted in failure to recruit arrestin and a
decreased extent of internalization, although the initial
rates were normal.82 Changes in the extent of internal-
ization are challenging to interpret, as higher expres-
sion levels frequently result in a decreased extent of
internalization of receptors in transfected cell lines,
likely due to saturation of the internalization machin-
ery. Thus, the precise mechanisms controlling internal-
ization kinetics are far from clear.

Studies on CB1 trafficking have been complicated by
the presence of a large intracellular pool of receptors
observed in both primary and recombinant cell lines,
and native expressing tissues.93 While it was predicted
that these receptors represented a pool of receptors
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from which CB1 could be rapidly mobilized to the cell
surface,95 mobilization has not yet been observed, al-
though the receptors do undergo constitutive synthe-
sis and degradation.93 Recent studies have suggested
that these intracellular receptors may be involved
in signaling,99,100 a suggestion made more feasible
by the high lipid solubility of the endocannabinoid
ligands. Intracellular CB1 has recently been suggested
to be present in mitochondria in neurons and astro-
cytes, suggested to signal through mitochondrial G
proteins leading to inhibition of cAMP and mitochon-
drial respiration.101,102

Studies detailing the trafficking properties of CB2 are
limited. Early studies utilizing an antibody that failed to
detect hCB2 when phosphorylated at serine 352 sug-
gested that CB2 undergoes agonist-mediated phosphor-
ylation in response to CP55,940. The phosphorylation
was accompanied by decreased signaling in both CHO
and HL60 cells.103,104 Agonist-mediated internalization
has also been observed in response to CP55,940103,105

and 2-AG.103,106 Early studies suggested that CB2 was
repeatedly phosphorylated and dephosphorylated by al-
ternate stimulation with agonist and inverse agonist im-
plying that CB2 recycling may occur,69 and this was
more recently demonstrated to be the case, and to be
Rab11 dependent.107 The effect of the inverse agonist
SR144528 on CB2 internalization is unclear as some
find a decrease in cell surface CB2,103 while others find
no change.106 One recent study has suggested that
chronic treatment with a cannabinoid agonist leads to
CB2-mediated upregulation of GRK5 in rat prefrontal
cortex via a b-arrestin-2-dependent pathway,108 but fur-
ther molecular studies are required.

For many receptors, bias has been observed in the
ability of ligands to induce internalization.109 The con-
sequences of such bias are not straightforward to inter-
pret. We can speculate that if a receptor remained on
the cell surface longer in the presence of a particular li-
gand, it might exhibit prolonged signaling, however,
equally, if the receptors are desensitized but remain
on the cell surface, feedback mechanisms governing
the recycling of the receptor (for CB2) or delivery of
new receptor to the cell surface (for CB1) might be al-
tered leading to an overall reduction in signaling.

Biased signaling of cannabinoid receptors
The diverse chemical structures of commonly used
cannabinoid ligands increase the likelihood of identify-
ing biased signaling, and evidence of agonist bias has
emerged from a number of studies.

The first evidence for biased signaling through CB1

came from assays in which membranes of CB1 express-
ing Sf9 cells, stripped of their endogenous G proteins,
were reconstituted with purified G proteins.33 These
studies demonstrated that the relative activation of
Gai and Gao is dependent on the agonist. HU-210,
WIN55,212-2, and anandamide all elicited maximal
Gai activation, whereas THC caused only partial Gai ac-
tivation. In contrast, only HU-210 effected maximal CB1

stimulation of Gao, with anandamide, WIN55,212-2,
and THC all partially stimulating.33 This work was fur-
ther extended by coimmunoprecipitation of activated
G proteins in N18TG2 cells, which demonstrated that
WIN55,212-2 behaved as a full agonist for all three
Gai subtypes, while methanandamide appeared to be
an agonist at Gai3 and an inverse agonist at Gai1 and
Gai2.110 In addition, relative signaling efficacies and
potencies of CB1 ligands differ in different brain re-
gions,111–113 which may represent the different G pro-
tein compositions of different regions. Intriguingly,
plasmon-waveguide resonance (PWR) spectroscopy
has demonstrated that CP55,940 and WIN55,212-2 pro-
duced distinct spectral changes (PWR shifts in opposite
directions) on binding to the hCB1 indicating that the
two agonists produce qualitatively distinct active confor-
mations of the receptor, which have differing affinity for
Gai.

114 Differential signaling by WIN55,212-2 and
CP55,940 is consistent with the suggestion that these li-
gands have overlapping but distinct binding sites,115,116

a finding supported by molecular docking in the recently
described crystal structure of CB1.117,118

Laprairie et al.20 investigated the biased signaling of
WIN55,212-2, CP55,940, 2-AG, anandamide, THC,
cannabidiol, and the combination THC + cannabidiol
on several signaling pathways. The agonists were
used on in vitro medium spiny projection neurons hav-
ing a wild-type (STHdhQ7/Q7) or Huntington disease
(STHdhQ111/Q111) background. The effect on a range
of cannabinoid-dependent signaling pathways was
measured via pERK1/2 (Gai/o mediated), b-arrestin-1
recruitment to CB1 (by BRET), phosphorylation of
CREB (pCREB; suggested to be Gas mediated), phos-
phorylation of phospholipase C (pPLCb3; suggested
to be Gaq mediated), and phosphorylation of Akt
(pAkt) (Gbc mediated). The signaling bias was calcu-
lated relative to WIN55,212-2 signaling. This study
found that CP55,940 induced signaling biased toward
Gas and b-arrestin-1 compared to Gai/o, while Gai/o

signaling was biased compared to Gaq and Gbc in
both cell types (i.e., Gas > b-arrestin-1 > Gai/o > Gaq >
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Gbc). 2-AG elicited signaling bias toward Gbc com-
pared to Ga

i/o
(in STHdhQ7/Q7 cells), and Gai/o-biased

signaling compared to b-arrestin-1 (in STHdhQ7/Q7

cells) and Gaq (predominantly in STHdhQ111/Q111)
(i.e., Gbc > Gai/o > b-arrestin-1 > Gaq). Similar to 2-
AG, anandamide signaling was biased toward Gbc
compared to Gai/o (in STHdhQ7/Q7 cells), while Gai/o

signaling was biased compared to b-arrestin-1 and
Gaq (mostly in STHdhQ111/Q111) (i.e., Gbc >Gai/o > b-
arrestin1 > Gaq). THC produced signaling biased to-
ward b-arrestin-1, Gaq, and Gbc compared to Gai/o

in both cell types (i.e., b-arrestin-1 >Gaq = Gbc > Gai/o).
Since cannabidiol treatment only evoked signifi-
cant Gas-mediated pCREB, bias values could not be
calculated for this ligand. The combination of THC +
cannabidiol induced signaling biased toward Gas com-
pared with Gai/o, while signaling was biased toward
Gai/o compared with b-arrestin-1, Gaq, and Gbc (pre-
dominantly in STHdhQ7/Q7 cells) (i.e., Gas > Gai/o > b-
arrestin1 = Gaq = Gbc).

Khajehali et al.60 investigated biased signaling and
allosteric modulation between cAMP and ERK1/2 acti-
vation using CHO cells stably expressing CB1 treated
with CP55,940, HU-210, WIN55,212-2, THC, metha-
nandamide, anandamide, and 2-AG. pERK1/2 and
cAMP levels were measured in response to the treat-
ments. The signaling bias induced by each ligand was
calculated relative to 2-AG. CP55,940, HU-210,
WIN55,212-2, THC, methanandamide, and ananda-
mide all showed a preference toward cAMP inhibition
compared to pERK1/2. HU-210 and methanandamide
displayed strong bias toward cAMP inhibition, whereas
CP55,940, THC, and anandamide showed nonsignifi-
cant bias toward cAMP inhibition. As both these path-
ways are pertussis toxin sensitive in these cells, this may
indicate bias between a- and bc-mediated pathways
(although the exact pathway for pERK1/2 activation
was not defined). The mechanism by which a and bc
bias could be mediated is currently unclear.

The putative Gas coupling of CB1 has also shown
potential for agonist bias. While equivalent rank
order of potencies was observed for inhibiting or stim-
ulating cAMP in CHO-hCB1 cells, anandamide and
CP55,940 were significantly less efficacious in stimu-
lating the accumulation of cAMP than in inhibiting
its formation.119 Forskolin acts synergistically with
CB1-activated Gas at adenylyl cyclase.35 Cannabinoid
receptor-mediated stimulation of cAMP also revealed
differences among agonists in as much as forskolin en-
hanced the potency of HU-210 and CP55,940 by

*100-fold but had no effect on the potency of
WIN55,212–2 or anandamide.119

Perhaps the most extreme example of agonist bias
for one G protein over another through CB1 is that ob-
served in the proposed coupling of CB1 to Gaq. Lauck-
ner et al.40 demonstrated that high concentrations of
WIN55,212-2, but not THC, HU-210, 2-AG, or meth-
anandamide resulted in increased release of [Ca]i

through a Gaq pathway. More recently, rat hippocam-
pal autaptic long-term potentiation has been suggested
to be mediated by 2-AG-induced CB1 activation of
Gaq, suggesting that biased signaling may not hold be-
tween different cell types.120 N-arachidonoyl dopamine
(NADA) represents an interesting case for a putative
highly biased CB1 agonist as it is currently only known
to affect very select pathways.121 NADA is an endo-
cannabinoid agonist of both CB1 and TRPV1.122,123

NADA binds orthosterically to CB1 with high nanomo-
lar affinity but has no substantial effect on GIRK-
mediated hyperpolarization, cAMP levels, pERK, or
adenylyl cyclase activity. At concentrations above
30 lM, NADA elevates [Ca]i levels from intracellular
stores in cell cultures and causes a slow internalization
of CB1 from the cell surface. The data strongly suggest
that NADA signals via a Gaq-mediated pathway.
Although NADA did not potently induce [Ca]i, it has
been demonstrated to be more potent under different
in vitro assay conditions122 and in brain slices.124,125 In
summary, significant bias in activating Gaq-mediated re-
sponses occurs, with only a small subset of ligands
reporting this (WIN55,212-2, NADA, and 2-AG), and
then only at high concentrations and in a tissue-
dependent manner.

For most GPCRs, interest in biased signaling has fo-
cused predominantly on the ability of agonists to dif-
ferentially modulate G protein and arrestin pathways.
The greatest promise for this to date through CB1 has
come from allosteric modulators. While ORG27569
has been suggested to generally inhibit agonist-
mediated G protein activation on its own,112 it has
been suggested to exhibit biased signaling toward
pERK1/2 pathways via b-arrestin-1.57,58 This finding
is not consistent across all reports, however, as oth-
ers59,60 did not find that treatment with ORG27569
alone induced pERK1/2. The different findings could
arise from differences in assay design or differences
in the relative receptor expression, and signaling sys-
tems between the different cells utilized.57,58,60,126 In
particular, time-dependent effects on CB1 signaling
have been reported in several studies of ORG27569
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and functionally related molecules,127,128 which may
account for some variability.

Pregnenolone, a putative endogenous allosteric
modulator of CB1 function, modifies agonist signaling
in a biased or selective manner, inhibiting pERK1/2 sig-
naling while not modifying cAMP signaling.129 Inter-
estingly, recent studies have suggested a similar
profile for Src homology 3-domain growth factor
receptor-bound 2-like (endophilin) interacting protein
1 (SGIP1), a CB1 interacting protein expressed in
HEK293 cells.130 These findings emphasize the chal-
lenges in interpreting pERK1/2 studies when the path-
way regulating it (G protein versus arrestin mediated)
is generally not well defined. An understanding of the
conformation of the receptors driven by the presence
of allosteric modulators may help guide the develop-
ment of highly biased agonists as it is likely that a
greater range of conformations may be achieved by tar-
geting regions outside of the relatively constrained
orthosteric binding site.

Similarly, receptor mutation studies may enhance
our understanding of the molecular drivers for bias.
A few examples of this are currently emerging, for ex-
ample, mutations in potential phosphorylation sites in
rCB1 (S426A/S430A) drive preferential signaling via b-
arrestin-1,55 while different mutations in the DRY
motif drive conformations to preferentially signal
through either G proteins or b-arrestins.131

Comparatively, there is little evidence for agonist bias
through G proteins for CB2, although some signaling
biases have been described. Shoemaker et al.105 com-
pared CP55,940, 2-AG, and 2-arachidonoylglyceryl-
ether using MAPK activation, stimulation of calcium
transients, and inhibition of adenylyl cyclase as the sig-
naling pathways. Each ligand differed in its rank order of
potency in the three assays despite similar efficacies.
Schuehly et al.132 found that AM630 displayed inverse
agonist/antagonist actions on CB2-mediated inhibition
of cAMP production and was silent in its effects on
[Ca]i transients. On the contrary, a novel CB2 ligand,
4-O-methylhonokiol, was an inverse agonist/antagonist
with regard to cAMP production but potentiated the
effects of 2-AG on calcium transients. Atwood et al.31

have further demonstrated that CP55,940, but not
WIN55,212-2, leads to inhibition of voltage-gated cal-
cium channels through CB2, in addition to different ac-
tions on receptor trafficking.

Recent studies have suggested agonist bias in CB2

internalization. Atwood et al.31 found that while
CP55,940 induced robust internalization of rCB2,

WIN55,212-2 failed to promote receptor internalization,
despite both agonists activating pERK, and arrestin re-
cruitment. Extending these studies, Dhopeshwarkar
and Mackie92 examined a range of ligands in inhibiting
adenylyl cyclase, internalization, and arrestin recruit-
ment to mCB2. Of the most commonly utilized ligands,
CP55,940 and JWH015 were the most balanced com-
pounds evaluated although JWH015 had lower efficacy.
The majority of the other compounds screened were G
protein biased, while a few less commonly utilized li-
gands (STS135; UR144; 4-O-methylhonokiol; and
GW833972A) were more arrestin biased. It will be inter-
esting to see if this difference results in different toler-
ance profiles to these agonists in CB2-mediated effects.

In a highly detailed analysis of functional selectivity
of CB2, Soethoudt et al.32 recently analyzed the ability
of a wide range of ligands to signal through hCB2

and analyzed the data with operational analyses. This
analysis suggested that THC showed bias toward
pERK signaling compared to arrestin and GTPcS,
and intriguingly, THC did not activate GIRK, indica-
tive of high bias against this pathway. (R,S)-AM1241
was biased toward arrestin coupling and pERK signal-
ing compared to GIRK channel activation. JWH133
was moderately biased toward arrestin compared to
GIRK, whereas both WIN55,212-2 and JWH015
showed preference for GIRK compared to cAMP sig-
naling. Anandamide showed preference for pERK
and GIRK signaling compared to cAMP, whereas 2-
AG was significantly biased toward GIRK compared
to cAMP and G protein signaling. On comparison be-
tween arrestin coupling and cAMP signaling, all li-
gands appear to be significantly biased, however, this
may reflect the choice of CP55,940 as the reference li-
gand, as this ligand appears itself biased toward
cAMP signaling. The authors of this study concluded
that HU-910 and HU-308 were well-balanced ligands
without significant bias toward any signal transduction
pathway on hCB2, but this study also highlighted spe-
cies differences, as at mCB2, HU-910 and HU-308
were significantly biased toward G protein signaling
over arrestin coupling. A limitation of this study is
that the different assays were conducted in different
cells lines, and thus, some differences may represent
different expressions of signaling molecules (e.g., dif-
ferent bc-subunit expression), which requires further
investigation. The study concludes that THC, 2-AG,
and (R,S)-AM1241 are highly biased CB2 agonists
and underscores that biased signaling at CB2 is subject
to species variation.
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Conclusions
The concept of agonist bias provides an exciting new
direction for developing therapeutics with less adverse
effects. However, for the cannabinoid receptors, this
field is still in its infancy. The influence of different
cell types, with different receptor numbers and second-
messenger expressions in the signaling pathways
measured, remains to be fully elucidated. This review
highlights that CB1- and CB2-biased signaling can be
different between tissues and species, which might
prove an issue for translating results from in vitro stud-
ies to in vivo. As a large body of the work describing bi-
ased signaling of the cannabinoid receptors is performed
using heterologously expressed receptors, future work
should include endogenously expressed receptors to de-
termine if previous observations are relevant.

Importantly, almost all of the studies described here
measured single time points for each signaling assay,
rather than clearly defining and comparing the kinetics
of each assay and it is clear that detection of bias can
change across time.133 Finally, and most importantly,
we do not yet know which pathways are mediating de-
sired therapeutic effects, and it remains an open ques-
tion whether or not these can be clearly defined or if the
therapeutic effects are mediated through a combination
of signaling pathways.
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Abbreviations Used
2-AG¼ 2-arachidonoylglycerol

CB1¼ cannabinoid receptor 1
CB2¼ cannabinoid receptor 2

CHO¼Chinese hamster ovary
CNS¼ central nervous system

ERK1/2¼ extracellular signal-regulated kinase 1 or 2
GIRKs¼G protein-gated inwardly rectifying potassium channels
GPCR¼G protein-coupled receptor
GRKs¼G protein receptor kinases
hCB2¼ human CB2

JNK¼ c-Jun-n terminal kinase
KO¼ knockout

MAP¼mitogen-activated protein
mCB2¼mouse CB2

NADA¼N-arachidonoyl dopamine
PDGF¼ platelet-derived growth factor

pERK1/2¼ phosphorylated ERK1/2
PWR¼ plasmon-waveguide resonance
rCB1¼ rat CB
THC¼ tetrahydrocannabinol
TRP¼ transient receptor potential
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