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ARTICLE INFO ABSTRACT

Keywords: The antioxidant and CB, receptor agonist properties of A°-tetrahydrocannabivarin (A°-THCV) afforded neuro-
Parkinson's disease protection in experimental Parkinson's disease (PD), whereas its CB; receptor antagonist profile at doses lower
L-DOPA than 5 mg/kg caused anti-hypokinetic effects. In the present study, we investigated the anti-dyskinetic potential
L-DOPA-induced dyskinesia of A°-THCV (administered i.p. at 2 mg/kg for two weeks), which had not been investigated before. This objective
Zz_n;Hazl\?mds was investigated after inducing dyskinesia by repeated administration of L-DOPA (i.p. at 10 mg/kg) in a genetic

model of dopaminergic deficiency, Pitx3°* mutant mice, which serves as a useful model for testing anti-dyski-
netic agents. The daily treatment of these mice with L-DOPA for two weeks progressively increased the time
spent in abnormal involuntary movements (AIMs) and elevated their horizontal and vertical activities (as
measured in a computer-aided actimeter), signs that reflected the dyskinetic state of these mice. Interestingly,
when combined with L-DOPA from the first injection, A>-THCV delayed the appearance of all these signs and
decreased their intensity, with a reduction in the levels of FosB protein and the histone pAcH3 (measured by
immunohistochemistry), which had previously been found to be elevated in the basal ganglia in L-DOPA-induced
dyskinesia. In addition to the anti-dyskinetic effects of A>THCV when administered at the onset of L-DOPA
treatment, A°>-THCV was also effective in attenuating the intensity of dyskinesia when administered for three
consecutive days once these signs were already present (two weeks after the onset of L-DOPA treatment). In
summary, our data support the anti-dyskinetic potential of A°>~THCV, both to delay the occurrence and to at-
tenuate the magnitude of dyskinetic signs. Although further studies are clearly required to determine the clinical
significance of these data in humans, the results nevertheless situate A>THCV in a promising position for de-
veloping a cannabinoid-based therapy for patients with PD.

CB, receptors
CB,, receptors

1. Introduction progressive death of dopaminergic neurons of the substantia nigra pars

compacta (Pavon et al., 2006; Sauerbier et al., 2016). Major symptoms

PD is a progressive neurodegenerative disorder whose etiology has
been associated with environmental insults, genetic susceptibility, or
interactions between both causes (Schapira and Jenner, 2011). The
major clinical symptoms in PD are tremor, bradykinesia, postural in-
stability and rigidity (Kim et al., 2018), symptoms that result from the
severe dopaminergic denervation of the striatum caused by the

in PD (e.g bradykinesia) can be attenuated with dopaminergic re-
placement therapy using the dopamine precursor L-DOPA (Pezzoli and
Zini, 2010). However, this therapy does not work in all PD patients and
when used for more than 5-10 years, it loses efficacy and provokes an
irreversible dyskinetic state characterized by the appearance of ab-
normal involuntary movements (Espay et al., 2018). Therefore, the
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search for novel symptomatic therapies that are devoid of pro-dyski-
netic side effects or able to delay/reduce these signs, in addition to
delaying the progression of nigrostriatal damage in PD, remains a major
challenge in PD therapy (Kulisevsky et al., 2018).

Cannabinoid-based compounds have been recently proposed as
promising therapies in PD given their potential as symptom-alleviating
and disease-modifying agents (Ferndndez-Ruiz, 2009; Gonzélez-
Aparicio and Moratalla, 2014; Ferndndez-Ruiz et al., 2015; Aymerich
et al., 2018; Antonazzo et al., 2019; Cristino et al., 2020; Junior et al.,
2020). As regards to the first of these two options, the blockade of the
CB; receptor, which is highly abundant in basal ganglia structures, may
be effective in reducing the motor inhibition typical of PD patients,
which is concordant with the overactivity of the cannabinoid system
observed in PD patients and animal models of this disease (reviewed in
Fernandez-Ruiz, 2009). However, the preclinical studies conducted so
far have demonstrated that the efficacy of CB,; receptor blockade was
restricted to specific circumstances, e.g the use of low doses, strong
nigral damage (Ferndndez-Espejo et al., 2005; Gonzélez et al., 2006;
Kelsey et al., 2009), conditions that were not reproduced in the only
clinical trial conducted so far with a CB; receptor blocker, which in-
cluded a population of patients that were all good-responders to L-
DOPA (Mesnage et al., 2004). Therefore, this potential therapeutic
strategy merits further clinical investigation, this time with PD patients
that respond poorly to L-DOPA (approximately 15-20% of patients are
poor responders to L-DOPA and it appears that, in general, they may
correspond to those having tremor as the key symptom rather than ri-
gidity and bradykinesia (Mohl et al., 2017)).

Some cannabinoids have been reported to protect nigral neurons
from death caused by different insults in various experimental models
of PD (reviewed in Fernandez-Ruiz, 2009; Fernandez-Ruiz et al., 2015;
Aymerich et al., 2018; Antonazzo et al., 2019; Cristino et al., 2020;
Junior et al., 2020). These include the phytocannabinoids, A°-THC and
CBD, the synthetic cannabinoid receptor agonist CP55,940 and the
anandamide analog AM404 (reviewed in Ferndndez-Ruiz, 2009;
Fernandez-Ruiz et al., 2015; Aymerich et al., 2018). A priori these
compounds acted through antioxidant mechanisms that seem to be
independent of CB; or CB,, although compounds also targeting the CB,
receptor afforded neuroprotection in MPTP- (Price et al., 2009; Chung
et al., 2016), LPS- (Garcia et al., 2011; Gémez-Gélvez et al., 2016) or
rotenone-lesioned (Javed et al., 2016) mice, with controversial results
in 6-OHDA-lesioned rodents (Garcia-Arencibia et al., 2007; Ternianov
et al., 2012). The benefits obtained with CB, agonists appeared to de-
pend predominantly on the activation of receptors located in activated
astrocytes and/or reactive microglial cells, which would result to be up-
regulated in the pathology in an attempt to limit the generation of
proinflammatory factors (Garcia et al., 2011; Concannon et al., 2015,
2016; Gémez-Galvez et al., 2016; Navarrete et al., 2018). However, a
contribution of CB, receptors located in a few neuronal subpopulations,
e.g nigrostriatal neurons (Garcia et al., 2015), pallidothalamic neurons
(Lanciego et al., 2011), in the basal ganglia cannot be ruled out. In
addition, cannabinoids that activate the PPAR nuclear receptors, in
particular at the PPAR-y type, were also neuroprotective in LPS-le-
sioned mice (Garcia et al., 2018), and those targeting GPR55 may also
be beneficial (Celorrio et al., 2017). By contrast, selectively activating
the CB; receptor, which may elicit ataxia as an adverse effect and/or
aggravate major parkinsonian symptoms (e.g. bradykinesia), given the
hypokinetic effects associated with the activation of this receptor
(Fernandez-Ruiz, 2009), has been found not to protect against 6-OHDA-
induced damage in pharmacological studies (Garcia-Arencibia et al.,
2007). However, CB; receptor-deficient mice display an increased
vulnerability to 6-OHDA lesions (Pérez-Rial et al., 2011), which in-
dicates certain neuroprotective potential exerted by this receptor type.
Therefore, these previous data provide good evidence that a cannabi-
noid having antioxidant properties and the ability to activate CB, and
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PPAR-y receptors and/or to target GPR55, but to also block CB; re-
ceptors, might serve to alleviate parkinsonian symptoms and to arrest/
delay neurodegeneration in this disease (see Fernandez-Ruiz, 2009;
Fernandez-Ruiz et al., 2015; Aymerich et al., 2018; Antonazzo et al.,
2019; Cristino et al., 2020; Junior et al., 2020, for review).

One phytocannabinoid with such a pharmacological profile is A®-
THCV. It is antioxidant and has been found to produce signs of CB,
receptor antagonism (when used at doses lower than 3 mg/kg (Pertwee,
2008)), but also CB, receptor activation with significant potency
(Garcia et al., 2011). It also appears to have certain agonist activity at
the GPR55 (Morales et al., 2017). Using different experimental models
of PD, we have demonstrated that A°>-THCV alleviates motor inhibition
in 6-OHDA-lesioned rodents by blocking CB; receptors at low doses,
with this effect being similar to that of the classic CB; receptor an-
tagonist/inverse agonist, rimonabant (Garcia et al., 2011). It was also
able to preserve nigral neurons against different degenerative stimuli in
6-OHDA- and LPS-lesioned mice due to its antioxidant properties and
CB, agonist activity (Garcia et al., 2011). Its effects in 6-OHDA-lesioned
mice were equivalent to those observed with the antioxidant phyto-
cannabinoid CBD (Lastres-Becker et al., 2005; Garcia-Arencibia et al.,
2007), whereas those found in LPS-lesioned mice were similar to those
found with HU-308, a selective CB, receptor agonist (Gémez-Gélvez
et al., 2016).

In the present study, we have investigated for the first time whether
A°-THCV, used at a low dose, is also anti-dyskinetic, a relevant property
for any antiparkinsonian agent. Previous studies implicated modulation
of endocannabinoid signaling, in particular targeting the CB, receptor,
in delaying/reducing L-DOPA-induced dyskinesia (reviewed in
Ferndndez-Ruiz, 2009; Fernandez-Ruiz et al., 2015; Aymerich et al.,
2018). For example, CB; receptor-deficient mice showed less severe
dyskinetic signs when lesioned with 6-OHDA and treated with L-DOPA
in comparison with wild-type animals (Pérez-Rial et al., 2011). This
supports the hypothesis that pharmacological blockade of this receptor
may be beneficial for L-DOPA-induced dyskinesia, which has already
been investigated in some studies using experimental models (Segovia
et al., 2003; Cao et al., 2007; Gutiérrez-Valdez et al., 2013). Benefits
were also found after activation of the CB; receptor (Segovia et al.,
2003; Morgese et al., 2007; Martinez et al., 2012), demonstrating the
extreme complexity of the role exerted by this modulatory system in the
basal ganglia. In any case, this potential has not been corroborated yet
in clinical studies (Carroll et al., 2004). A recent study has added the
CB, receptor to those endocannabinoid targets susceptible to serve for
treating L-DOPA-induced dyskinesia (Rentsch et al., 2020). The current
study was designed to explore the benefits of A>-THCV against L-DOPA-
induced dyskinesia elicited in a genetic model of dopaminergic defi-
ciency, Pitx3® mutant mice, which has been widely used to test anti-
dyskinetic agents (Hwang et al., 2005; Solis et al., 2015; Suarez et al.,
2018). These mice are characterized by hypomorphic expression of the
transcription factor gene Pitx3 due to a spontaneous mutation in the
aphakia locus affecting the lens-brain-specific promoter, and leaving
intact the muscle-specific promoter (Luk et al., 2013; Del Rio-Martin
et al.,, 2019). The hypomorphic Pitx3 expression severely affects dif-
ferentiation of dopamine neurons with a dramatic reduction in number
of neurons in the substantia nigra pars compacta and strong lack of do-
pamine in the striatum (Alberquilla et al., 2020). Our study investigated
first whether the treatment with A°>-THCV administered daily in parallel
to L-DOPA was associated with a delay in the appearance of dyskinetic
movements, and also whether A°-THCV was able to reduce dyskinetic
signs when administered once the L-DOPA-induced dyskinesia was al-
ready established. In addition, given that the experimental model used
is the first time that was investigated in relation with cannabinoids, our
study also included an analysis of the status of major endocannabinoid
elements in wildtype and Pitx3% mutant mice at the age that animals
were used for pharmacological treatments.
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2. Materials and methods
2.1. Animals and treatments

2.1.1. Animals

Pitx3%* mutant male mice (Nunes et al., 2003; Suarez et al., 2016)
and their wildtype male littermates, bred in the animal facilities of the
Cajal Institute, were genotyped using PCR amplification analysis of tail-
tip DNA extracts. Mice were housed under a 12 h dark/light cycle with
free access to food and water. They were used for experimental pur-
poses when they were 4-6 months-old (weighing 24-30 g). Animal care
and experimental procedures were conducted according to European
rules (directive 2010/63/EU) and ARRIVE guidelines, and were ap-
proved by the Ethics Committee of the “Consejo Superior de In-
vestigaciones Cientificas (CSIC)”. All efforts were made to minimize the
number of animals used in this study.

2.1.2. L-DOPA and A°-THCV treatment

In the first experiment, animals were treated with an i.p. injection of
10 mg/kg of benserazide hydrochloride (Sigma-Aldrich, Madrid, Spain)
followed 20 min later by a second i.p. injection of 10 mg/kg of L-DOPA
methyl ester (Sigma-Aldrich, Madrid, Spain). Separate groups of ani-
mals received equivalent injections with vehicle (saline) to be used as
controls. Both L-DOPA- and vehicle-treated mice received, 10 min after
the second injection, a third i.p. injection with the phytocannabinoid
A°-THCV (2 mg/kg; GW Research Ltd., Cambridge, UK) or vehicle
(Tween 80-saline). The doses for the three compounds were chosen
following previous studies (Garcia et al., 2011; Solis et al., 2015), in
particular in the case of the dose of 2 mg/kg for A°>-THCV, the selection
was based on preliminary data to confirm its activity as a CB; receptor
antagonist and a CB, receptor agonist (Garcia et al., 2011) following
previous studies (reviewed in Pertwee, 2008). The same treatment
schedule was repeated daily for two weeks. In the second experiment,
benserazide and L-DOPA (and their corresponding vehicles) were ad-
ministered to mice following the same schedule as the previous ex-
periment, but A°-THCV, at 2 mg/kg, was given for the first time after
two weeks of daily benserazide/L-DOPA treatment, with the adminis-
tration of the three compounds (and vehicles) extending for at least
3 days.

2.2. Behavioral measurements

2.2.1. Abnormal involuntary movements

AIMs were assessed 30 and 60 min after L-DOPA administration.
Previous studies (Pavon et al., 2006; Ruiz-DeDiego et al., 2015) have
demonstrated that the incidence and intensity of AIMs are maximal at
30 and 60 min following L-DOPA administration. Dyskinesia was scored
off-line by an assessor who was blind to treatment group allocation
based on video footage (Ding et al., 2007; Solis et al., 2015; Ruiz-
DeDiego et al., 2018; Garcia-Montes et al., 2019). Ratings were assessed
for four minutes at each time point. Total dyskinesia was rated by
adding the duration in seconds of all three-paw and four-paw dyskinetic
bouts, as described previously (Suarez et al., 2016). Additionally, on
odd days, individual mice were placed in actimeters and assessed for
motor activity following drug administration. On Day 14, AIMs were
evaluated every 20 min for 160 min after administering L-DOPA to
determine the extinction of this response (Solis et al., 2015).

2.2.2. Locomotor activity

Horizontal and vertical activities were recorded, as described pre-
viously (Centonze et al., 2003; Granado et al., 2008), using a multicage
activity meter system (Columbus Instruments, Columbus, OH, USA)
consisting of a set of 8 individual cages measuring 20 X 20 X 28 cm.
Animals were introduced in the actimeter 60 min after L-DOPA injec-
tion and were assessed for 30 min. Horizontal movement was detected
by 2 arrays of 16 infrared beams, whereas a third array positioned 4 cm
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above the floor detected vertical movement. The software can differ-
entiate between repetitive interruptions of the same photobeam and
interruptions of adjacent photobeams. The latter measure was used as
an index of ambulatory activity.

2.3. Sampling and tissue preparation

Following behavioral analysis, animals were euthanized 1 h after
the last injection of L-DOPA with an overdose of pentobarbital
(Laboratorios Normon, Madrid, Spain), injected intracardially with
0.5 mL of 1% heparin (Rovi, Madrid, Spain) and then perfused with
10 mL of saline and 50 mL of 4% paraformaldehyde in phosphate buffer
(pH 7.4). The brains were post-fixed for 24 h and were then transferred
to a solution of 0.1 M phosphate buffer containing 0.02% sodium azide
for storage at 4 °C. To obtain regular blocks, brains were further im-
mersed in 3% agarose and cut in coronal sections (30 um thick) using a
vibratome (Leica, Wetzlar, Germany), as described previously (Granado
et al., 2010). As a supplementary data, naive wildtype and Pitx3?
mutant mice (4-6 months-old; 24-30 g) were euthanized and their
brains removed and dissected to obtain the striatum and the substantia
nigra. Tissues were rapidly frozen and stored at —80 °C up to be used
for qPCR analysis of different endocannabinoid genes (see details in
supplementary Fig. 1).

2.4. Immunohistochemistry

Immunostaining was carried out by researchers who were blind to
the identities of the treatment groups in free-floating sections using a
standard avidin-biotin immunohistochemical protocol (Suarez et al.,
2016, 2018) with the following rabbit antisera: (i) FosB (1:7500, Santa
Cruz Biotechnology, Santa Cruz, California), and (ii) pAcH3 (1:500;
Upstate, Cell Signaling Solutions, Lake Placid, New York). Briefly, after
incubation with primary antibody (overnight), the sections were wa-
shed and incubated with biotinylated secondary anti-rabbit antibody
(1:500) (Vector Laboratories) for 1 h at room temperature. After
washing, the sections were incubated with streptavidin (Zymed, San
Francisco, CA, USA) for 1 h and antibody staining was developed using
DAB (Sigma-Aldrich, Madrid, Spain). After developing the reaction,
stained sections were mounted, dried, dehydrated, and coverslipped
with Permount mounting medium (Fisher Chemicals, Fair Lawn, NJ,
USA).

For quantification of FosB and pAcH3 immunoreactivity in the
completely denervated area, we used the ImageJ analysis system
(Schneider et al., 2012) as previously shown (Ares-Santos et al., 2012;
Espadas et al., 2012; Solis et al., 2015). For all sides, immunostaining
intensity and number of immunolabeled nuclei were determined using
five serial rostrocaudal sections per animal and two counting frames
(dorsal and lateral) per section (0.091 mm? each frame). Images were
digitized with Leica microscope under 40X lens. Before counting,
images were thresholded at a standardized gray-scale level. The data
are presented as number of stained nuclei per mm? (mean + standard
error of the mean) in the lesioned striatum.

2.5. Real time qRT-PCR analysis

Total RNA was extracted from striatal and nigral samples using ei-
ther SurePrep RNA/Protein Purification Kit (Fisher Bioreagents,
Madrid, Spain) or RNeasy Lipid Tissue Minikit (Qiagen, Izasa, Madrid,
Spain). The total amount of RNA extracted was quantitated by spec-
trometry at 260 nm and its purity was evaluated by the ratio between
the absorbance values at 260 and 280 nm. After genomic DNA was
removed (to eliminate DNA contamination), single-stranded com-
plementary DNA was synthesized from 0.25 pg (or higher) of total RNA
using Rneasy Mini Quantitect Reverse Transcription (Qiagen, Izasa,
Madrid, Spain) and the iScript cDNA Synthesis Kit (Bio-Rad, Hercules,
CA, USA). The reaction mixture was kept frozen at —20 °C until
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enzymatic amplification. Quantitative real-time PCR assays were per-
formed using TaqMan Gene Expression Assays (Applied Biosystems,
Foster City, CA, USA) to quantify mRNA levels for CB; receptor (ref.
MmO00432621 _s1), CB, receptor (ref. Mm00438286_m1), FAAH (ref.
MmO00515684_m1), and MAGL (ref. Mm00449274_m1), using GAPDH
expression (ref. Mm99999915 g1) as an endogenous control gene for
normalization. The PCR assay was performed using the 7300 Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA) and the
threshold cycle (Ct) was calculated by the instrument's software (7300
Fast System, Applied Biosystems, Foster City, CA, USA). Data were
expressed as percentages over the wild-type group.

2.6. Statistical analysis

Data were normally distributed (tested with the Shapiro-Wilk nor-
mality test) and were assessed by one-way or two-way (with repeated
measures) analysis of variance, as required (see specific test used in the
legends to figures), followed by the Bonferroni test, using GraphPad
Prism® software (version 5.01; GraphPad Software Inc., San Diego, CA,
USA).

3. Results

3.1. Status of several endocannabinoid elements in wildtype and Pitx3%
mutant mice

Our study was initiated with the analysis of the status of the major
endocannabinoid elements (CB; and CB, receptors, and FAAH and
MAGL enzymes) in Pitx3¢ mutant mice compared to control animals,
given that this was the first time that this experimental model was used
in cannabinoid research. This was conducted in basal conditions using
qPCR, but not after the treatment with L-DOPA and/or A°-THCV, whose
tissues were used for other purposes (immunohistochemistry). Our data
proved that gene expression for CB; and CB, receptors and FAAH and
MAGL enzymes were similar in the striatum and the substantia nigra of
wildtype and Pitx3™ mutant mice, with the only exception of an in-
crease in MAGL found exclusively in the striatum (see Supplementary
Fig. 1).

3.2. Development of L-DOPA-induced dyskinesia in Pitx3% mutant mice

In accordance with previous reports (Ding et al., 2007; Li and Zhou,
2013), the chronic treatment of Pitx3?* mutant mice with L-DOPA re-
sulted in the progressive appearance of AIMs (including front paw, hind
paw, three-paw, and four-paw dyskinetic movements; Fig. 1). As a
measure of the intensity of dyskinesia, the three- and four-paw dyski-
netic movements (Ding et al., 2011) were measured at 30 min (treat-
ment: F(3,294) = 124.4, p < .0001; time: F(6,294) = 10.81,
p < .0001; Fig. 1A) and 60 min (treatment: F(3,294) = 73.50,
p < .0001; time: F(6,294) = 5.61, p < .0001; Fig. 1B) after ad-
ministering L-DOPA. Dyskinetic movements were already evident after
the first injection of L-DOPA (treatment: F(3,88) = 3.01, p < .05),
although the posthoc analysis did not reveal any statistical significance
compared to vehicle-treated groups (Fig. 1C), but the time spent in
AIMs was significantly elevated during the first week of treatment
(Fig. 1A,B). After this, the values of the dyskinetic movements remained
stable for the rest of the chronic treatment (Fig. 1A,B). On the last
treatment day, a time-course was conducted to determine the extinction
of dyskinetic movements, which revealed that they were present for at
least 2 h after administering L-DOPA (treatment: F(3,336) = 60.99,
p < .0001; time: F(7,336) = 17.49, p < .0001; Fig. 1D).

The dyskinetic profile shown by Pitx3*% mutant mice after a chronic
treatment with L-DOPA also included elevated horizontal (treatment: F
(3,252) = 100.2, p < .0001; time: F(5,252) = 12.34, p < .0001;
Fig. 2A) and vertical (treatment: F(3,252) = 37.73,p < .0001; time: F
(5,252) = 6.84,p < .0001; Fig. 2B) activities measured in a computer-
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aided actimeter. The elevation was found after four days of chronic L-
DOPA treatment, and it remained during the second week of treatment
(Fig. 2A,B).

3.3. A°-THCV delays the appearance of L-DOPA-induced dyskinesia in
Pitx3° mutant mice

The first objective in this study was to evaluate whether A°>-THCV
could delay the appearance of L-DOPA-induced dyskinetic signs in
Pitx3% mutant mice. Thus, the co-administration of A°>-THCV with L-
DOPA reduced the duration of AIMs (three/four-paw dyskinetic
movements) at 30 min post-L-DOPA administration, except for days 1
and 3 (2-way interaction: F(18,294) = 3.84, p < .0001; Fig. 1A), a
fact also reflected in AUC value for the treatment with L-DOPA alone
(859.8 s x days) compared to that calculated for the co-treatment with
L-DOPA and A°-THCV (598.7 s x days). This effect was, however, much
more modest when analyzed at 60 min after L-DOPA administration (2-
way interaction: F(18,294) = 1.95, p < .05), remaining only as nu-
merical trend towards a decrease but with no statistical differences
between L-DOPA (AUC value: 684.5 s x days) and L-DOPA + A°-THCV
(AUC value: 551.8 s x days) groups after the posthoc analysis (Fig. 1B).
This fact is related more to the reduction in the scores for AIMs at
60 min (compared to 30 min) in the L-DOPA-treated group, rather than
to changes in the scores of L-DOPA + A°-THCV group, which at both
times appear relatively similar (Fig. 1A,B).

On the last day of treatment, the differences between animals
treated with L-DOPA and A°-THCV and those treated with L-DOPA
alone remained up to 80 min post-treatment and disappeared after-
wards (2-way interaction: F(21,336) = 6.01, p < .0001; Fig. 1D), but
they were simply numerical trends towards a decrease with the posthoc
analysis (Fig. 1D). It is important to remark that the treatment of
Pitx3* mutant mice with A>-THCV alone did not induce any dyskinetic
movements in any case showing values always similar to vehicle-
treated animals at all times (Fig. 1A-D).

The co-administration of A°>-THCV with L-DOPA attenuated the
elevated horizontal (2-way interaction: F(15,252) = 5.25, p < .0001;
Fig. 2A) and vertical (2-way interaction: F(15,252) = 2.80,p < .0005;
Fig. 2B) activities found in L-DOPA-treated Pitx3°® mutant mice
(Fig. 2A,B), in particular at days 8, 10 and 12 for horizontal activity
(Fig. 2A) and at day 10 for vertical activity (Fig. 2B). Such beneficial
effects were found at 60 min after L-DOPA treatment (Fig. 2A,B), which
contrasts with the fact that AIMs were only slightly reduced at that time
(Fig. 1B). However, it is necessary to remark that both tests possibly
reflect different aspects of motor behavioral anomalies (dyskinetic
movements in the first one versus these signs and also excess of am-
bulatory and rearing activities in the multicage activity meter system)
elicited by L-DOPA and it may be normal that the timing for these re-
sponses may be different. On the other hand, whereas the treatment
with A°>-THCV alone has no effect on the horizontal activity compared
to Pitx3?* mutant mice treated with vehicle (Fig. 2A), the phyto-
cannabinoid administered alone to these mice resulted in a numerical
trend towards an elevation in vertical activity, although this elevation
was not statistically significant compared to vehicle-treated mice and
did not reach the level of animals treated with L-DOPA (Fig. 2B). This
effect could be related to the anti-hypokinetic action of A°>-THCV de-
scribed previously (Garcia et al., 2011).

3.4. A®°-THCV reduced striatal molecular determinants of L-DOPA treated
Pitx3° mutant mice

Previous studies described an elevated FosB expression induced by
L-DOPA treatment in the dopamine-denervated striatum of Pitx3°¢
mutant mice, which correlates with the appearance of dyskinesia
(Pavén et al., 2006; Solis et al., 2015; Garcia-Montes et al., 2019), and a
similar elevation in the phosphoacetylation of histone 3 in the striatum
(Darmopil et al., 2009). The elevation in both striatal molecular
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Fig. 1. The effect of A>~THCV in the development of L-DOPA-induced dyskinesia in Pitx3** mutant mice. Chronic A°>-THCV treatment attenuates dyskinesia at 30 min
(A) and, to a lesser extent, at 60 min (B) post-L-DOPA. A two-way ANOVA with repeated measures followed by the Bonferroni test showed significant differences at
30 min (treatment: F(3,294) = 124.4, p < .0001; time: F(6,294) = 10.81, p < .0001; interaction: F(18,294) = 3.84, p < .0001) and 60 min (treatment: F
(3,294) = 73.50, p < .0001; time: F(6,294) = 5.61, p < .0001; interaction: F(18,294) = 1.95,p < .05). C: The acute co-treatment with A°-THCV and L-DOPA
decreases, but not significantly, the dyskinesia score at 30 min and 60 min on the day 1 of treatment, using a two-way ANOVA with repeated measures followed by
the Bonferroni test (treatment: F(3,88) = 3.01, p < .05; time: F(1,88) = 0.02, ns; interaction: F(3,88) = 0.14, ns). D: The kinetic profile of dyskinetic symptoms was
evaluated once every 20 min over 160 min on day 13 of the L-DOPA treatment. A two-way ANOVA with repeated measures followed by the Bonferroni test showed
significant differences (treatment: F(3,336) = 60.99, p < .0001; time: F(7,336) = 17.49, p < .0001; interaction: F(21,336) = 6.01, p < .0001). The data are
expressed as the mean * SEM of at least 6 animals per group; *p < .05, **p < .01, ***p < .005 versus mice treated with vehicle or A°>~THCV alone; #p < .05,
##p < .01 versus mice treated with L-DOPA alone.
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Fig. 2. Chronic A°-THCV treatment decreases motor hyperactivity induced by L-DOPA in Pitx3?* mutant mice. Horizontal (A) and vertical (B) motor activities were
measured in a multicage activity meter system 60 min after L-DOPA or vehicle challenge. A two-way ANOVA with repeated measures followed by the Bonferroni test
showed significant differences for the horizontal (treatment: F(3,252) = 100.2, p < .0001; time: F(5,252) = 12.34, p < .0001; interaction: F(15,252) = 5.25,
p < .0001) and vertical (treatment: F(3,252) = 37.73, p < .0001; time: F(5,252) = 6.84, p < .0001; interaction: F(15,252) = 2.80,p < .0005) activities. The
data are expressed as the mean *+ SEM of at least 6 animals per group; *p < .05, **p < .01, ***p < .005 versus mice treated with vehicle or A>THCV alone;
###p < .001 versus mice treated with L-DOPA alone.
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Fig. 3. A°-THCV treatment decreases L-DOPA-induced FosB expression in the striatum of Pitx3** mutant mice. A: High-power microphotographs of striatal sections
from Pitx3?* mutant mice illustrating the effect of chronic A°>-THCV treatment on L-DOPA-induced FosB expression. B: Striatal quantification of FosB-positive cells
after different treatments. The A°-THCV challenge attenuates the increased expression of FosB-positive cells caused by L-DOPA treatment. Histograms represent the
number of FosB nuclei. C: In addition, the A°>-THCV treatment attenuates the immunostaining-intensity of FosB positive nuclei. Histograms represent a comparative of
immunostaing-intensity in a relative scale. The data are expressed as the mean + SEM of at least 4 animals per group and they were analyzed by one-way ANOVA
followed by the Bonferroni test (positive nuclei: F(3,25) = 32.1, p < .0001; immunoreactivity: F(3,25) = 17.5, p < .0001). *p < .05, ***p < .005 versus mice
treated with vehicle or A>-THCV alone; #p < .05, ###p < .005 versus mice treated with L-DOPA alone. Scale bar = 50 pm.
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Fig. 4. Treatment with A°-THCV decreases L-DOPA-induced pAcH3 expression in the striatum of Pitx3** mutant mice. A: High-power microphotographs of the
striatal sections of Pitx3** mutant mice illustrating the effect of chronic A°-THCV treatment on pAcH3 expression induced by L-DOPA. B: Striatal quantification of
pAcH3-positive cells after different treatments. The A°>-THCV challenge attenuates the increased expression of pAcH3-positive cells caused by L-DOPA treatment.
Histograms represent the number of pAcH3 nuclei. C: In addition, the A°-THCV treatment attenuates the immunostaining-intensity of pAcH3 positive nuclei.
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Fig. 5. The effect of A>-THCV on established L-DOPA-induced dyskinesia at the
first peak-dose of L-DOPA. Pitx3?* mutant mice received daily injections of L-
DOPA for 13 days to establish dyskinetic status. On day 14, 15 and 16, animals
received A°>-THCV or vehicle 10 min after L-DOPA injection. The A°-THCV
treatment significantly reduced dyskinesia at 30 min post-L-DOPA. The data are
expressed as the mean = SEM of at least 6 animals per group. Two-way
ANOVA followed by the Bonferroni test showed significant differences (treat-
ment: F(1,166) = 14.17, p < .0005; time: F(9,166) = 15.75, p < .0001;
interaction: F(9,166) = 5.54, p < .0001). ***p < .005 versus L-DOPA.

markers has been also observed in the present study using im-
munostaining in L-DOPA-treated Pitx3°* mutant mice (Figs. 3A and
4A). Interestingly, both responses were significantly attenuated after
the co-administration with A°>-THCV (Figs. 3A and 4A). In the case of
FosB, the A°-THCV-induced reduction affected both the number (F
(3,25) = 32.07,p < .0001; Fig. 3B) and the immunostaining intensity
(F(3,25) = 17.55, p < .0001; Fig. 3C) of FosB-positive cells compared
to the chronic L-DOPA-treated mice, whereas the lowering effect in the
case of pACH3 was only evident in the intensity of immunostained-
nuclei (Fig. 4B,C) and was also seen when A°-THCV was given alone (F
(3,24) = 26.86, p < .0001; Fig. 4C).

3.5. Delayed treatment with A°-THCV also attenuated the magnitude of L-
DOPA-induced dyskinesia in Pitx3°* mutant mice

The second objective was to further explore the antidyskinetic po-
tential of A°-THCV by investigating whether, in addition to its cap-
ability to delay the appearance of dyskinetic signs, A°>~THCV could af-
fect the intensity of dyskinesia when administered once these signs
were already present. To this end, A°>-THCV treatment commenced two
weeks after the onset of L-DOPA treatment. As shown in Fig. 5, animals
chronically treated with L-DOPA developed a progressive elevation in
AlIMs (in general, similar to the data presented in Fig. 1A) up to day 13
(Fig. 5) when they were randomly distributed in two different sub-
groups, treated with L-DOPA alone or co-treated with L-DOPA and A°-
THCV. Mice treated with A°>-THCV from day 14 onwards displayed a
reduction in the duration of L-DOPA-induced three/four-paw dyski-
nesia 30 min after the L-DOPA injection, in comparison with the group
that received L-DOPA alone, and this persisted for 3 days (treatment: F
(1,166) = 14.17, p < .0005; time: F(9,166) = 15.75,p < .0001; 2-
way interaction: F(9,166) = 5.54, p < .0001; Fig. 5).

4. Discussion

The gold standard therapy in PD is L-DOPA, which is an inter-
mediate metabolite in dopamine synthesis that easily crosses the blood-
brain barrier. L-DOPA is not subjected to the enzymatic limitation that
occurs with the natural precursor, L-tyrosine, and thus provides a rapid
generation of dopamine in synapses due to its fast decarboxylation in
surviving dopaminergic/serotonergic terminals and other striatal
neural substrates (Carta et al., 2007; Hadjiconstantinou and Neff,
2008). L-DOPA therapy helps a relatively high percentage of patients
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with PD, excluding frequently those having tremor as the key symptom
(Mohl et al., 2017), but, after 5-10 years of daily use, it causes the
appearance of abnormal involuntary movements, so-called dyskinetic
movements, as well as a loss of efficacy that represents an important
problem for patients (Espay et al., 2018). Efforts are being made in the
search for new symptom-alleviating agents that do not generate dys-
kinetic signs, or in the identification and development of coadjuvants
that may be combined with L-DOPA with the objective of using lower
(and less dyskinetic) doses of this precursor, or to attenuate/delay the
occurrence of side effects associated with normal (and prodyskinetic)
doses (Johnston et al., 2019).

Among the different mechanisms and targets investigated regarding
pathogenesis and potential new therapies for dyskinesia, one attractive
option is the endocannabinoid system and, in particular, the CB; re-
ceptor (Fernandez-Ruiz, 2009; Gonzéalez-Aparicio and Moratalla, 2014;
Aymerich et al., 2018). Despite controversy surrounding the data gen-
erated to date, interest in these targets remains, with beneficial effects
found with both the activation (Segovia et al., 2003; Morgese et al.,
2007; Martinez et al., 2012) and the blockade (Segovia et al., 2003; Cao
et al.,, 2007; Gutiérrez-Valdez et al., 2013) of the CB; receptor (see
details in the Introduction). Our present study is not designed to further
investigate the reasons for such controversy, but to determine whether
the plant-derived cannabinoid, A>-THCV, whose pharmacological pro-
file appears attractive for PD (it may be neuroprotective due to its an-
tioxidant and CB, receptor agonist properties, as well as anti-hypoki-
netic derived from its CB; receptor antagonist profile at doses lower
than 5 mg/kg; see Garcia et al., 2011), may also serve as an anti-dys-
kinetic agent, a property extremely useful for any antiparkinsonian
agent. Our study is the first one to investigate A°-THCV for its anti-
dyskinetic potential. To achieve this, we used Pitx3? mutant mice,
which are considered a reliable animal model of parkinsonism asso-
ciated with dopaminergic deficiency, given the role played by the
transcription factor Pitx3 in the development of midbrain dopamine
neurons (Nunes et al., 2003; Hwang et al., 2003; van den Munckhof
et al., 2003). In fact, Pitx3 polymorphisms have been associated with
PD (Fuchs et al., 2009). Pitx3%* mutant mice present a selective bilateral
dopamine depletion in the nigrostriatal system that is associated with
impaired spontaneous locomotor activity showing akinesia (Nunes
et al., 2003; van den Munckhof et al., 2003), then serving as a tool to
investigate drugs with antiparkinsonian activity (van den Munckhof
et al., 2006; Solis et al., 2015). This also includes L-DOPA, for which
Pitx3* mutant mice are highly responders (Hwang et al., 2005), even
developing dyskinesias following repeated L-DOPA administration
(Iderberg et al., 2012) and reproducing the biochemical, histochemical
and synaptic plasticity changes induced by L-DOPA in other models of
experimental parkinsonism (Ding et al., 2007, 2011; Espadas et al.,
2012; Li and Zhou, 2013; Alberquilla et al., 2020). In our study, the
appearance of dyskinetic signs (AIMs, and horizontal and vertical hy-
peractivity) during the treatment of Pitx3° mutant mice with L-DOPA
was significantly prevented by co-administration with A°~-THCV. Our
data also indicated that the anti-dyskinetic effect of A°>-THCV was likely
associated with a reduction in two molecular markers, FosB and pAcH3,
that have been found to be exacerbated in the dopamine-denervated
striatum after L-DOPA treatment (Pavon et al., 2006; Darmopil et al.,
2009; Solis et al., 2015), more particularly in striatal neurons of the
direct pathway as we demonstrated by double immunostaining and
optogenetic stimulation (Keifman et al., 2019).

It is important to remark that this beneficial effect of A>-THCV was
observed when the phytocannabinoid was co-administered with L-
DOPA during the whole period of treatment, thus supporting the idea
that A°>-THCV delays the occurrence of L-DOPA-induced dyskinesia.
However, we also wanted to investigate whether A°>-THCV also ex-
hibited anti-dyskinetic properties when administered once L-DOPA-in-
duced dyskinesia was already established, and this was again the case.
Our data indicated that the intensity of dyskinetic signs was attenuated
when A°-THCV was co-administered with L-DOPA for 3 days after
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13 days of daily treatment with L-DOPA alone. This additional ob-
servation is extremely important to support the anti-dyskinetic profile
of A°>-THCV that adds to the other therapeutic benefits described for this
phytocannabinoid in previous studies (Garcia et al., 2011).

As regards to the mechanism(s) that may explain the anti-dyskinetic
effect found for A°-THCV in our study, the first option would be its
activity as a CB, receptor antagonist at the dose used here. This should
be confirmed by combining A°-THCV with other cannabinoid capable to
activate the CB; receptor, but the benefits reported also for CB; re-
ceptor agonists (Segovia et al., 2003; Morgese et al., 2007; Martinez
et al., 2012) make difficult that such experiment may be explanatory. A
second option, not excluding the first one, is that anti-dyskinetic effects
of A°>-THCV may depend on the activation of CB, receptors for which
this phytocannabinoid is an agonist, but confirming this option would
require additional experiments combining A°>-THCV with a selective
CB, receptor antagonist. Anyway, the option of the CB, receptor as a
target for the anti-dyskinetic effects of A°>THCV is reinforced by the
recent demonstration that HU-308, a synthetic cannabinoid that acts as
a selective agonist for the CB, receptor, works also against L-DOPA-
induced dyskinesia (Rentsch et al., 2020). This option is also supported
by the recent data demonstrating that the neuroprotective effects of CB,
receptor activation in in vivo and in vitro models of experimental par-
kinsonism involved the modulation of intracellular signaling related to
Pitx3 (He et al., 2020), just the transcription factor used to generate our
experimental model. Anyway, it is important to remark that these two
options (blocking CB; and activating CB,) are not self-excluding, and
may work cooperatively to reduce L-DOPA-induced dyskinesia. This is
supported by recent evidence showing that both CB; and CB, receptors
are associated in heteromeric receptor complexes in L-DOPA-induced
dyskinesia (Navarro et al., 2018). The interest of this association is that
it may affect the pharmacology of both receptors when they work se-
parately. Lastly, a third option for the anti-dyskinetic action of A°>-THCV
is the possibility that it can target other receptors, e.g. GPR55, for which
this phytocannabinoid has been also proposed as a potential agonist
(Morales et al., 2017), but this would require additional experiments
with antagonists for this orphan receptor, which, at present, are not
particularly useful.

5. Conclusions

In summary, our data support the anti-dyskinetic potential of A®-
THCV to ameliorate adverse effects caused by L-DOPA, in particular
delaying the occurrence and attenuating the magnitude of dyskinetic
signs. This adds to its promising symptom-alleviating and neuropro-
tective properties described previously (Garcia et al., 2011). Although
further studies are clearly required to determine the clinical sig-
nificance of these data in humans, the results nevertheless situate A°-
THCV in a promising position for developing a cannabinoid-based
therapy for PD patients.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nbd.2020.104892.
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